Reflexive graphs
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-02-10.
Last modified on 2024-12-03.
module graph-theory.reflexive-graphs where
Imports
open import foundation.binary-dependent-identifications open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.reflexive-relations open import foundation.universe-levels open import graph-theory.directed-graphs
Idea
A reflexive graph¶ is a directed graph equipped with a loop edge at every vertex.
Definition
Reflexive-Graph : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Reflexive-Graph l1 l2 = Σ ( Directed-Graph l1 l2) ( λ G → (x : vertex-Directed-Graph G) → edge-Directed-Graph G x x) module _ {l1 l2 : Level} (G : Reflexive-Graph l1 l2) where directed-graph-Reflexive-Graph : Directed-Graph l1 l2 directed-graph-Reflexive-Graph = pr1 G vertex-Reflexive-Graph : UU l1 vertex-Reflexive-Graph = vertex-Directed-Graph directed-graph-Reflexive-Graph edge-Reflexive-Graph : vertex-Reflexive-Graph → vertex-Reflexive-Graph → UU l2 edge-Reflexive-Graph = edge-Directed-Graph directed-graph-Reflexive-Graph refl-Reflexive-Graph : (x : vertex-Reflexive-Graph) → edge-Reflexive-Graph x x refl-Reflexive-Graph = pr2 G edge-reflexive-relation-Reflexive-Graph : Reflexive-Relation l2 vertex-Reflexive-Graph pr1 edge-reflexive-relation-Reflexive-Graph = edge-Reflexive-Graph pr2 edge-reflexive-relation-Reflexive-Graph = refl-Reflexive-Graph binary-dependent-identification-refl-Reflexive-Graph : {x y : vertex-Reflexive-Graph} (p : x = y) → binary-dependent-identification edge-Reflexive-Graph p p ( refl-Reflexive-Graph x) ( refl-Reflexive-Graph y) binary-dependent-identification-refl-Reflexive-Graph = binary-dependent-identification-refl-Reflexive-Relation edge-reflexive-relation-Reflexive-Graph
See also
External links
- Reflexive graph at Lab
- Graph on Wikidata
- Directed graph at Wikipedia
- Reflexive graph at Wolfram MathWorld
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-11-19. Egbert Rijke. Correcting an incorrect definition of discrete relations and discrete graphs (#1222).
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2024-03-24. Fredrik Bakke. Some notions of graphs (#1091).