Commuting elements of groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-10.
Last modified on 2023-09-12.
module group-theory.commuting-elements-groups where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.commuting-elements-monoids open import group-theory.groups
Idea
Two elements x
and y
of a group G
are said to
commute if the equality xy = yx
holds. For any element x
, the subset of
elements that commute with x
form a subgroup of
G
called the centralizer of the
element x
.
Definitions
Commuting elements
module _ {l : Level} (G : Group l) where commute-prop-Group : (x y : type-Group G) → Prop l commute-prop-Group = commute-prop-Monoid (monoid-Group G) commute-Group : (x y : type-Group G) → UU l commute-Group = commute-Monoid (monoid-Group G) commute-Group' : (x y : type-Group G) → UU l commute-Group' = commute-Monoid' (monoid-Group G) is-prop-commute-Group : (x y : type-Group G) → is-prop (commute-Group x y) is-prop-commute-Group = is-prop-commute-Monoid (monoid-Group G)
Properties
The relation commute-Group
is reflexive
module _ {l : Level} (G : Group l) where refl-commute-Group : (x : type-Group G) → commute-Group G x x refl-commute-Group = refl-commute-Monoid (monoid-Group G)
The relation commute-Group
is symmetric
module _ {l : Level} (G : Group l) where symmetric-commute-Group : (x y : type-Group G) → commute-Group G x y → commute-Group G y x symmetric-commute-Group = symmetric-commute-Monoid (monoid-Group G)
The unit element commutes with every element of the group
module _ {l : Level} (G : Group l) where commute-unit-Group : (x : type-Group G) → commute-Group G x (unit-Group G) commute-unit-Group = commute-unit-Monoid (monoid-Group G)
If x
commutes with y
, then x
commutes with y⁻¹
module _ {l : Level} (G : Group l) where commute-inv-Group : (x y : type-Group G) → commute-Group G x y → commute-Group G x (inv-Group G y) commute-inv-Group x y H = double-transpose-eq-mul-Group' G (inv H)
If x
commutes with y
, then x * (y * z) = y * (x * z)
for any element z
module _ {l : Level} (G : Group l) where private infix 45 _*_ _*_ = mul-Group G left-swap-commute-Group : (x y z : type-Group G) → commute-Group G x y → x * (y * z) = y * (x * z) left-swap-commute-Group = left-swap-commute-Monoid (monoid-Group G) right-swap-commute-Group : (x y z : type-Group G) → commute-Group G y z → (x * y) * z = (x * z) * y right-swap-commute-Group = right-swap-commute-Monoid (monoid-Group G)
If x
commutes with y
and with z
, then x
commutes with yz
module _ {l : Level} (G : Group l) where commute-mul-Group : (x y z : type-Group G) → commute-Group G x y → commute-Group G x z → commute-Group G x (mul-Group G y z) commute-mul-Group = commute-mul-Monoid (monoid-Group G)
Recent changes
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).