Radical ideals of commutative rings
Content created by Egbert Rijke, Fredrik Bakke, Maša Žaucer and Gregor Perčič.
Created on 2023-03-19.
Last modified on 2023-11-24.
module commutative-algebra.radical-ideals-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.ideals-commutative-rings open import commutative-algebra.powers-of-elements-commutative-rings open import commutative-algebra.subsets-commutative-rings open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositions open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.universe-levels
Idea
An ideal I
in a commutative ring is said to be radical if for every
element f : A
such that there exists an n
such that fⁿ ∈ I
, we have
f ∈ I
. In other words, radical ideals are ideals that contain, for every
element u ∈ I
, also the n
-th roots of u
if it has any.
Definitions
The condition of being a radical ideal
module _ {l1 l2 : Level} (A : Commutative-Ring l1) where is-radical-ideal-prop-Commutative-Ring : (I : ideal-Commutative-Ring l2 A) → Prop (l1 ⊔ l2) is-radical-ideal-prop-Commutative-Ring I = Π-Prop ( type-Commutative-Ring A) ( λ f → Π-Prop ℕ ( λ n → function-Prop ( is-in-ideal-Commutative-Ring A I (power-Commutative-Ring A n f)) ( subset-ideal-Commutative-Ring A I f))) is-radical-ideal-Commutative-Ring : (I : ideal-Commutative-Ring l2 A) → UU (l1 ⊔ l2) is-radical-ideal-Commutative-Ring I = type-Prop (is-radical-ideal-prop-Commutative-Ring I) is-prop-is-radical-ideal-Commutative-Ring : (I : ideal-Commutative-Ring l2 A) → is-prop (is-radical-ideal-Commutative-Ring I) is-prop-is-radical-ideal-Commutative-Ring I = is-prop-type-Prop (is-radical-ideal-prop-Commutative-Ring I)
Radical ideals
radical-ideal-Commutative-Ring : {l1 : Level} (l2 : Level) → Commutative-Ring l1 → UU (l1 ⊔ lsuc l2) radical-ideal-Commutative-Ring l2 A = Σ (ideal-Commutative-Ring l2 A) (is-radical-ideal-Commutative-Ring A) module _ {l1 l2 : Level} (A : Commutative-Ring l1) (I : radical-ideal-Commutative-Ring l2 A) where ideal-radical-ideal-Commutative-Ring : ideal-Commutative-Ring l2 A ideal-radical-ideal-Commutative-Ring = pr1 I is-radical-radical-ideal-Commutative-Ring : is-radical-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-radical-radical-ideal-Commutative-Ring = pr2 I subset-radical-ideal-Commutative-Ring : subset-Commutative-Ring l2 A subset-radical-ideal-Commutative-Ring = subset-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-in-radical-ideal-Commutative-Ring : type-Commutative-Ring A → UU l2 is-in-radical-ideal-Commutative-Ring = is-in-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-closed-under-eq-radical-ideal-Commutative-Ring : {x y : type-Commutative-Ring A} → is-in-radical-ideal-Commutative-Ring x → (x = y) → is-in-radical-ideal-Commutative-Ring y is-closed-under-eq-radical-ideal-Commutative-Ring = is-closed-under-eq-subset-Commutative-Ring A subset-radical-ideal-Commutative-Ring is-closed-under-eq-radical-ideal-Commutative-Ring' : {x y : type-Commutative-Ring A} → is-in-radical-ideal-Commutative-Ring y → (x = y) → is-in-radical-ideal-Commutative-Ring x is-closed-under-eq-radical-ideal-Commutative-Ring' = is-closed-under-eq-subset-Commutative-Ring' A subset-radical-ideal-Commutative-Ring type-radical-ideal-Commutative-Ring : UU (l1 ⊔ l2) type-radical-ideal-Commutative-Ring = type-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring inclusion-radical-ideal-Commutative-Ring : type-radical-ideal-Commutative-Ring → type-Commutative-Ring A inclusion-radical-ideal-Commutative-Ring = inclusion-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-ideal-radical-ideal-Commutative-Ring : is-ideal-subset-Commutative-Ring A subset-radical-ideal-Commutative-Ring is-ideal-radical-ideal-Commutative-Ring = is-ideal-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring contains-zero-radical-ideal-Commutative-Ring : is-in-radical-ideal-Commutative-Ring (zero-Commutative-Ring A) contains-zero-radical-ideal-Commutative-Ring = contains-zero-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-closed-under-addition-radical-ideal-Commutative-Ring : is-closed-under-addition-subset-Commutative-Ring A subset-radical-ideal-Commutative-Ring is-closed-under-addition-radical-ideal-Commutative-Ring = is-closed-under-addition-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-closed-under-left-multiplication-radical-ideal-Commutative-Ring : is-closed-under-left-multiplication-subset-Commutative-Ring A subset-radical-ideal-Commutative-Ring is-closed-under-left-multiplication-radical-ideal-Commutative-Ring = is-closed-under-left-multiplication-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-closed-under-right-multiplication-radical-ideal-Commutative-Ring : is-closed-under-right-multiplication-subset-Commutative-Ring A subset-radical-ideal-Commutative-Ring is-closed-under-right-multiplication-radical-ideal-Commutative-Ring = is-closed-under-right-multiplication-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring is-closed-under-powers-radical-ideal-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) → is-in-radical-ideal-Commutative-Ring x → is-in-radical-ideal-Commutative-Ring (power-Commutative-Ring A (succ-ℕ n) x) is-closed-under-powers-radical-ideal-Commutative-Ring = is-closed-under-powers-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring
Properties
Characterizing equality of radical ideals
module _ {l1 : Level} (A : Commutative-Ring l1) where has-same-elements-radical-ideal-Commutative-Ring : {l2 l3 : Level} → radical-ideal-Commutative-Ring l2 A → radical-ideal-Commutative-Ring l3 A → UU (l1 ⊔ l2 ⊔ l3) has-same-elements-radical-ideal-Commutative-Ring I J = has-same-elements-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) refl-has-same-elements-radical-ideal-Commutative-Ring : {l2 : Level} (I : radical-ideal-Commutative-Ring l2 A) → has-same-elements-radical-ideal-Commutative-Ring I I refl-has-same-elements-radical-ideal-Commutative-Ring I = refl-has-same-elements-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) is-torsorial-has-same-elements-radical-ideal-Commutative-Ring : {l2 : Level} (I : radical-ideal-Commutative-Ring l2 A) → is-torsorial ( has-same-elements-radical-ideal-Commutative-Ring I) is-torsorial-has-same-elements-radical-ideal-Commutative-Ring I = is-torsorial-Eq-subtype ( is-torsorial-has-same-elements-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I)) ( is-prop-is-radical-ideal-Commutative-Ring A) ( ideal-radical-ideal-Commutative-Ring A I) ( refl-has-same-elements-radical-ideal-Commutative-Ring I) ( is-radical-radical-ideal-Commutative-Ring A I) has-same-elements-eq-radical-ideal-Commutative-Ring : {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) → (I = J) → has-same-elements-radical-ideal-Commutative-Ring I J has-same-elements-eq-radical-ideal-Commutative-Ring I .I refl = refl-has-same-elements-radical-ideal-Commutative-Ring I is-equiv-has-same-elements-eq-radical-ideal-Commutative-Ring : {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) → is-equiv (has-same-elements-eq-radical-ideal-Commutative-Ring I J) is-equiv-has-same-elements-eq-radical-ideal-Commutative-Ring I = fundamental-theorem-id ( is-torsorial-has-same-elements-radical-ideal-Commutative-Ring I) ( has-same-elements-eq-radical-ideal-Commutative-Ring I) extensionality-radical-ideal-Commutative-Ring : {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) → (I = J) ≃ has-same-elements-radical-ideal-Commutative-Ring I J pr1 (extensionality-radical-ideal-Commutative-Ring I J) = has-same-elements-eq-radical-ideal-Commutative-Ring I J pr2 (extensionality-radical-ideal-Commutative-Ring I J) = is-equiv-has-same-elements-eq-radical-ideal-Commutative-Ring I J eq-has-same-elements-radical-ideal-Commutative-Ring : {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) → has-same-elements-radical-ideal-Commutative-Ring I J → I = J eq-has-same-elements-radical-ideal-Commutative-Ring I J = map-inv-equiv (extensionality-radical-ideal-Commutative-Ring I J)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).