Radical ideals of commutative rings

Content created by Egbert Rijke, Fredrik Bakke, Maša Žaucer and Gregor Perčič.

Created on 2023-03-19.
Last modified on 2023-11-24.

module commutative-algebra.radical-ideals-commutative-rings where
Imports
open import commutative-algebra.commutative-rings
open import commutative-algebra.ideals-commutative-rings
open import commutative-algebra.powers-of-elements-commutative-rings
open import commutative-algebra.subsets-commutative-rings

open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtype-identity-principle
open import foundation.torsorial-type-families
open import foundation.universe-levels

Idea

An ideal I in a commutative ring is said to be radical if for every element f : A such that there exists an n such that fⁿ ∈ I, we have f ∈ I. In other words, radical ideals are ideals that contain, for every element u ∈ I, also the n-th roots of u if it has any.

Definitions

The condition of being a radical ideal

module _
  {l1 l2 : Level} (A : Commutative-Ring l1)
  where

  is-radical-ideal-prop-Commutative-Ring :
    (I : ideal-Commutative-Ring l2 A)  Prop (l1  l2)
  is-radical-ideal-prop-Commutative-Ring I =
    Π-Prop
      ( type-Commutative-Ring A)
      ( λ f 
        Π-Prop 
          ( λ n 
            function-Prop
              ( is-in-ideal-Commutative-Ring A I (power-Commutative-Ring A n f))
              ( subset-ideal-Commutative-Ring A I f)))

  is-radical-ideal-Commutative-Ring :
    (I : ideal-Commutative-Ring l2 A)  UU (l1  l2)
  is-radical-ideal-Commutative-Ring I =
    type-Prop (is-radical-ideal-prop-Commutative-Ring I)

  is-prop-is-radical-ideal-Commutative-Ring :
    (I : ideal-Commutative-Ring l2 A) 
    is-prop (is-radical-ideal-Commutative-Ring I)
  is-prop-is-radical-ideal-Commutative-Ring I =
    is-prop-type-Prop (is-radical-ideal-prop-Commutative-Ring I)

Radical ideals

radical-ideal-Commutative-Ring :
  {l1 : Level} (l2 : Level)  Commutative-Ring l1  UU (l1  lsuc l2)
radical-ideal-Commutative-Ring l2 A =
  Σ (ideal-Commutative-Ring l2 A) (is-radical-ideal-Commutative-Ring A)

module _
  {l1 l2 : Level} (A : Commutative-Ring l1)
  (I : radical-ideal-Commutative-Ring l2 A)
  where

  ideal-radical-ideal-Commutative-Ring : ideal-Commutative-Ring l2 A
  ideal-radical-ideal-Commutative-Ring = pr1 I

  is-radical-radical-ideal-Commutative-Ring :
    is-radical-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring
  is-radical-radical-ideal-Commutative-Ring = pr2 I

  subset-radical-ideal-Commutative-Ring : subset-Commutative-Ring l2 A
  subset-radical-ideal-Commutative-Ring =
    subset-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring

  is-in-radical-ideal-Commutative-Ring : type-Commutative-Ring A  UU l2
  is-in-radical-ideal-Commutative-Ring =
    is-in-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring

  is-closed-under-eq-radical-ideal-Commutative-Ring :
    {x y : type-Commutative-Ring A}  is-in-radical-ideal-Commutative-Ring x 
    (x  y)  is-in-radical-ideal-Commutative-Ring y
  is-closed-under-eq-radical-ideal-Commutative-Ring =
    is-closed-under-eq-subset-Commutative-Ring A
      subset-radical-ideal-Commutative-Ring

  is-closed-under-eq-radical-ideal-Commutative-Ring' :
    {x y : type-Commutative-Ring A}  is-in-radical-ideal-Commutative-Ring y 
    (x  y)  is-in-radical-ideal-Commutative-Ring x
  is-closed-under-eq-radical-ideal-Commutative-Ring' =
    is-closed-under-eq-subset-Commutative-Ring' A
      subset-radical-ideal-Commutative-Ring

  type-radical-ideal-Commutative-Ring : UU (l1  l2)
  type-radical-ideal-Commutative-Ring =
    type-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring

  inclusion-radical-ideal-Commutative-Ring :
    type-radical-ideal-Commutative-Ring  type-Commutative-Ring A
  inclusion-radical-ideal-Commutative-Ring =
    inclusion-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring

  is-ideal-radical-ideal-Commutative-Ring :
    is-ideal-subset-Commutative-Ring A subset-radical-ideal-Commutative-Ring
  is-ideal-radical-ideal-Commutative-Ring =
    is-ideal-ideal-Commutative-Ring A
      ideal-radical-ideal-Commutative-Ring

  contains-zero-radical-ideal-Commutative-Ring :
    is-in-radical-ideal-Commutative-Ring (zero-Commutative-Ring A)
  contains-zero-radical-ideal-Commutative-Ring =
    contains-zero-ideal-Commutative-Ring A ideal-radical-ideal-Commutative-Ring

  is-closed-under-addition-radical-ideal-Commutative-Ring :
    is-closed-under-addition-subset-Commutative-Ring A
      subset-radical-ideal-Commutative-Ring
  is-closed-under-addition-radical-ideal-Commutative-Ring =
    is-closed-under-addition-ideal-Commutative-Ring A
      ideal-radical-ideal-Commutative-Ring

  is-closed-under-left-multiplication-radical-ideal-Commutative-Ring :
    is-closed-under-left-multiplication-subset-Commutative-Ring A
      subset-radical-ideal-Commutative-Ring
  is-closed-under-left-multiplication-radical-ideal-Commutative-Ring =
    is-closed-under-left-multiplication-ideal-Commutative-Ring A
      ideal-radical-ideal-Commutative-Ring

  is-closed-under-right-multiplication-radical-ideal-Commutative-Ring :
    is-closed-under-right-multiplication-subset-Commutative-Ring A
      subset-radical-ideal-Commutative-Ring
  is-closed-under-right-multiplication-radical-ideal-Commutative-Ring =
    is-closed-under-right-multiplication-ideal-Commutative-Ring A
      ideal-radical-ideal-Commutative-Ring

  is-closed-under-powers-radical-ideal-Commutative-Ring :
    (n : ) (x : type-Commutative-Ring A) 
    is-in-radical-ideal-Commutative-Ring x 
    is-in-radical-ideal-Commutative-Ring (power-Commutative-Ring A (succ-ℕ n) x)
  is-closed-under-powers-radical-ideal-Commutative-Ring =
    is-closed-under-powers-ideal-Commutative-Ring A
      ideal-radical-ideal-Commutative-Ring

Properties

Characterizing equality of radical ideals

module _
  {l1 : Level} (A : Commutative-Ring l1)
  where

  has-same-elements-radical-ideal-Commutative-Ring :
    {l2 l3 : Level} 
    radical-ideal-Commutative-Ring l2 A 
    radical-ideal-Commutative-Ring l3 A  UU (l1  l2  l3)
  has-same-elements-radical-ideal-Commutative-Ring I J =
    has-same-elements-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( ideal-radical-ideal-Commutative-Ring A J)

  refl-has-same-elements-radical-ideal-Commutative-Ring :
    {l2 : Level} (I : radical-ideal-Commutative-Ring l2 A) 
    has-same-elements-radical-ideal-Commutative-Ring I I
  refl-has-same-elements-radical-ideal-Commutative-Ring I =
    refl-has-same-elements-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)

  is-torsorial-has-same-elements-radical-ideal-Commutative-Ring :
    {l2 : Level} (I : radical-ideal-Commutative-Ring l2 A) 
    is-torsorial
      ( has-same-elements-radical-ideal-Commutative-Ring I)
  is-torsorial-has-same-elements-radical-ideal-Commutative-Ring I =
    is-torsorial-Eq-subtype
      ( is-torsorial-has-same-elements-ideal-Commutative-Ring A
        ( ideal-radical-ideal-Commutative-Ring A I))
      ( is-prop-is-radical-ideal-Commutative-Ring A)
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( refl-has-same-elements-radical-ideal-Commutative-Ring I)
      ( is-radical-radical-ideal-Commutative-Ring A I)

  has-same-elements-eq-radical-ideal-Commutative-Ring :
    {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) 
    (I  J)  has-same-elements-radical-ideal-Commutative-Ring I J
  has-same-elements-eq-radical-ideal-Commutative-Ring I .I refl =
    refl-has-same-elements-radical-ideal-Commutative-Ring I

  is-equiv-has-same-elements-eq-radical-ideal-Commutative-Ring :
    {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) 
    is-equiv (has-same-elements-eq-radical-ideal-Commutative-Ring I J)
  is-equiv-has-same-elements-eq-radical-ideal-Commutative-Ring I =
    fundamental-theorem-id
      ( is-torsorial-has-same-elements-radical-ideal-Commutative-Ring I)
      ( has-same-elements-eq-radical-ideal-Commutative-Ring I)

  extensionality-radical-ideal-Commutative-Ring :
    {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) 
    (I  J)  has-same-elements-radical-ideal-Commutative-Ring I J
  pr1 (extensionality-radical-ideal-Commutative-Ring I J) =
    has-same-elements-eq-radical-ideal-Commutative-Ring I J
  pr2 (extensionality-radical-ideal-Commutative-Ring I J) =
    is-equiv-has-same-elements-eq-radical-ideal-Commutative-Ring I J

  eq-has-same-elements-radical-ideal-Commutative-Ring :
    {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) 
    has-same-elements-radical-ideal-Commutative-Ring I J  I  J
  eq-has-same-elements-radical-ideal-Commutative-Ring I J =
    map-inv-equiv (extensionality-radical-ideal-Commutative-Ring I J)

Recent changes