The precategory of metric spaces and isometries
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.precategory-of-metric-spaces-and-isometries where
Imports
open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.type-arithmetic-cartesian-product-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import metric-spaces.equality-of-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces
Idea
The isometries between metric spaces form a precategory.
Definitions
module _ {l1 l2 : Level} where precategory-isometry-Metric-Space : Precategory (lsuc l1 ⊔ lsuc l2) (l1 ⊔ l2) precategory-isometry-Metric-Space = make-Precategory ( Metric-Space l1 l2) ( set-isometry-Metric-Space) ( λ {A B C} → comp-isometry-Metric-Space A B C) ( isometry-id-Metric-Space) ( λ {A B C D} → associative-comp-isometry-Metric-Space A B C D) ( λ {A B} → left-unit-law-comp-isometry-Metric-Space A B) ( λ {A B} → right-unit-law-comp-isometry-Metric-Space A B)
Properties
Isomorphisms in the precategory of metric spaces and isometries are equivalences
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) (f : isometry-Metric-Space A B) where is-equiv-is-iso-isometry-Metric-Space : is-iso-Precategory precategory-isometry-Metric-Space {A} {B} f → is-equiv (map-isometry-Metric-Space A B f) is-equiv-is-iso-isometry-Metric-Space (g , H) = is-equiv-is-invertible ( map-isometry-Metric-Space B A g) ( htpy-eq (ap (map-isometry-Metric-Space B B) (pr1 H))) ( htpy-eq (ap (map-isometry-Metric-Space A A) (pr2 H)))
Isometric equivalences are isomorphisms in the precategory of metric spaces and isometries
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) (f : isometry-Metric-Space A B) (E : is-equiv (map-isometry-Metric-Space A B f)) where is-iso-is-equiv-isometry-Metric-Space : is-iso-Precategory precategory-isometry-Metric-Space {A} {B} f pr1 is-iso-is-equiv-isometry-Metric-Space = isometry-inv-is-equiv-isometry-Metric-Space A B f E pr2 is-iso-is-equiv-isometry-Metric-Space = ( is-section-isometry-inv-is-equiv-isometry-Metric-Space A B f E) , ( is-retraction-isometry-inv-is-equiv-isometry-Metric-Space A B f E)
Isomorphic types in the precategory of metric spaces are isometrically equivalent
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) where equiv-iso-isometric-equiv-Metric-Space' : iso-Precategory precategory-isometry-Metric-Space A B ≃ isometric-equiv-Metric-Space' A B equiv-iso-isometric-equiv-Metric-Space' = equiv-tot (λ f → commutative-product) ∘e associative-Σ ( map-type-Metric-Space A B) ( is-isometry-Metric-Space A B) ( is-equiv ∘ map-isometry-Metric-Space A B) ∘e equiv-tot ( λ f → equiv-iff ( is-iso-prop-Precategory ( precategory-isometry-Metric-Space) { A} { B} ( f)) ( is-equiv-Prop ( map-isometry-Metric-Space A B f)) ( is-equiv-is-iso-isometry-Metric-Space A B f) ( is-iso-is-equiv-isometry-Metric-Space A B f))
See also
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).