The precategory of metric spaces and isometries

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.precategory-of-metric-spaces-and-isometries where
Imports
open import category-theory.isomorphisms-in-precategories
open import category-theory.precategories

open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.subtypes
open import foundation.torsorial-type-families
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels

open import metric-spaces.equality-of-metric-spaces
open import metric-spaces.functions-metric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.metric-spaces

Idea

The isometries between metric spaces form a precategory.

Definitions

module _
  {l1 l2 : Level}
  where

  precategory-isometry-Metric-Space :
    Precategory (lsuc l1  lsuc l2) (l1  l2)
  precategory-isometry-Metric-Space =
    make-Precategory
      ( Metric-Space l1 l2)
      ( set-isometry-Metric-Space)
      ( λ {A B C}  comp-isometry-Metric-Space A B C)
      ( isometry-id-Metric-Space)
      ( λ {A B C D}  associative-comp-isometry-Metric-Space A B C D)
      ( λ {A B}  left-unit-law-comp-isometry-Metric-Space A B)
      ( λ {A B}  right-unit-law-comp-isometry-Metric-Space A B)

Properties

Isomorphisms in the precategory of metric spaces and isometries are equivalences

module _
  {l1 l2 : Level} (A B : Metric-Space l1 l2)
  (f : isometry-Metric-Space A B)
  where

  is-equiv-is-iso-isometry-Metric-Space :
    is-iso-Precategory precategory-isometry-Metric-Space {A} {B} f 
    is-equiv (map-isometry-Metric-Space A B f)
  is-equiv-is-iso-isometry-Metric-Space (g , H) =
    is-equiv-is-invertible
      ( map-isometry-Metric-Space B A g)
      ( htpy-eq (ap (map-isometry-Metric-Space B B) (pr1 H)))
      ( htpy-eq (ap (map-isometry-Metric-Space A A) (pr2 H)))

Isometric equivalences are isomorphisms in the precategory of metric spaces and isometries

module _
  {l1 l2 : Level} (A B : Metric-Space l1 l2)
  (f : isometry-Metric-Space A B)
  (E : is-equiv (map-isometry-Metric-Space A B f))
  where

  is-iso-is-equiv-isometry-Metric-Space :
    is-iso-Precategory precategory-isometry-Metric-Space {A} {B} f
  pr1 is-iso-is-equiv-isometry-Metric-Space =
    isometry-inv-is-equiv-isometry-Metric-Space A B f E
  pr2 is-iso-is-equiv-isometry-Metric-Space =
    ( is-section-isometry-inv-is-equiv-isometry-Metric-Space A B f E) ,
    ( is-retraction-isometry-inv-is-equiv-isometry-Metric-Space A B f E)

Isomorphic types in the precategory of metric spaces are isometrically equivalent

module _
  {l1 l2 : Level} (A B : Metric-Space l1 l2)
  where

  equiv-iso-isometric-equiv-Metric-Space' :
    iso-Precategory precategory-isometry-Metric-Space A B 
    isometric-equiv-Metric-Space' A B
  equiv-iso-isometric-equiv-Metric-Space' =
    equiv-tot  f  commutative-product) ∘e
    associative-Σ
      ( map-type-Metric-Space A B)
      ( is-isometry-Metric-Space A B)
      ( is-equiv  map-isometry-Metric-Space A B) ∘e
    equiv-tot
      ( λ f 
        equiv-iff
          ( is-iso-prop-Precategory
            ( precategory-isometry-Metric-Space)
            { A}
            { B}
            ( f))
          ( is-equiv-Prop
            ( map-isometry-Metric-Space A B f))
          ( is-equiv-is-iso-isometry-Metric-Space A B f)
          ( is-iso-is-equiv-isometry-Metric-Space A B f))

See also

Recent changes