K-Connected maps, with respect to a subuniverse K

Content created by Fredrik Bakke.

Created on 2025-11-12.
Last modified on 2025-11-12.

module orthogonal-factorization-systems.connected-maps-at-subuniverses where
Imports
open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.dependent-universal-property-equivalences
open import foundation.equivalences
open import foundation.equivalences-arrows
open import foundation.function-extensionality
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-coproduct-types
open import foundation.functoriality-dependent-function-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.inhabited-types
open import foundation.precomposition-dependent-functions
open import foundation.precomposition-functions
open import foundation.propositional-truncations
open import foundation.retracts-of-maps
open import foundation.sections
open import foundation.split-surjective-maps
open import foundation.subtype-identity-principle
open import foundation.subuniverses
open import foundation.surjective-maps
open import foundation.unit-type
open import foundation.universal-property-coproduct-types
open import foundation.universal-property-dependent-pair-types
open import foundation.universal-property-family-of-fibers-of-maps
open import foundation.universal-property-unit-type
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.embeddings
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.injective-maps
open import foundation-core.propositions
open import foundation-core.subtypes
open import foundation-core.torsorial-type-families

open import orthogonal-factorization-systems.connected-types-at-subuniverses
open import orthogonal-factorization-systems.equivalences-at-subuniverses
open import orthogonal-factorization-systems.extensions-dependent-maps
open import orthogonal-factorization-systems.localizations-at-subuniverses

open import synthetic-homotopy-theory.cocones-under-spans
open import synthetic-homotopy-theory.dependent-pullback-property-pushouts
open import synthetic-homotopy-theory.pushouts

Idea

Given a subuniverse K, a map f : A → B is said to be K-connected if it satisfies the universal property of K-connected maps:

For every K-valued family U over B, the dependent precomposition map

 - ∘ f : ((b : B) → U b) → ((a : A) → U (f a))

is an equivalence.

We give a series of increasingly stronger conditions for a map f to be K-connected. In particular, if unit ∈ K, then condition 4 recovers the usual definition of a K-connected map as in Definition 5.5.1 [Rij19], i.e., as a map whose fibers have contractible K-localizations.

  1. The map f is K-connected.
  2. For every K-valued family U over B and every map u : (x : A) → U (f x), the type of extensions of u along f is contractible.
  3. The map f is left orthogonal to maps h : C → B whose fibers are in K.
  4. The terminal projections of the fibers of f are K-equivalences.
  5. The fibers of f are K-connected in the sense that for every U in K, the diagonal map U → (fiber f y → U) is an equivalence.
  6. Every fiber of f satisfies the condition that for every U in K and every function u : fiber f y → U there uniquely exists an element v : U such that const v ~ u.
  7. The fibers of f have K-localizations, and for every y there merely exists a u : K(fiber f y) such that for all a and p : f a = y we have a dependent identification over p
      u =ₚ^[y ↦ K(fiber f y)] (η (f a) (a , refl))
    
  8. The fibers of f have K-localizations, and the dependent precomposition map of f is surjective at every K-valued family U over B.
  9. The fibers of f have K-localizations, and the dependent precomposition map of f has a section at every K-valued family U over B.

If the fibers of f have K-localizations then these conditions are all equivalent. More generally we always have that conditions 1-3 are equivalent, conditions 4-6 are equivalent, and conditions 7-9 are equivalent.

Definitions

The predicate on maps of being K-connected

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4}
  (f : A  B)
  where

  is-subuniverse-connected-map-Prop : Prop (lsuc l1  l2  l3  l4)
  is-subuniverse-connected-map-Prop =
    Π-Prop
      ( B  type-subuniverse K)
      ( λ U  is-equiv-Prop (precomp-Π f (pr1  U)))

  is-subuniverse-connected-map : UU (lsuc l1  l2  l3  l4)
  is-subuniverse-connected-map =
    (U : B  type-subuniverse K)  is-equiv (precomp-Π f (pr1  U))

  is-prop-is-subuniverse-connected-map :
    is-prop is-subuniverse-connected-map
  is-prop-is-subuniverse-connected-map =
    is-prop-type-Prop is-subuniverse-connected-map-Prop

The type of K-connected maps between two types

subuniverse-connected-map :
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) 
  UU l3  UU l4  UU (lsuc l1  l2  l3  l4)
subuniverse-connected-map K A B =
  type-subtype (is-subuniverse-connected-map-Prop K {A} {B})

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4}
  where

  map-subuniverse-connected-map : subuniverse-connected-map K A B  A  B
  map-subuniverse-connected-map =
    inclusion-subtype (is-subuniverse-connected-map-Prop K)

  is-subuniverse-connected-map-subuniverse-connected-map :
    (f : subuniverse-connected-map K A B) 
    is-subuniverse-connected-map K (map-subuniverse-connected-map f)
  is-subuniverse-connected-map-subuniverse-connected-map =
    is-in-subtype-inclusion-subtype (is-subuniverse-connected-map-Prop K)

  emb-inclusion-subuniverse-connected-map :
    subuniverse-connected-map K A B  (A  B)
  emb-inclusion-subuniverse-connected-map =
    emb-subtype (is-subuniverse-connected-map-Prop K)

The extension condition of K-connected maps

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  where

  is-subuniverse-connected-map-extension-condition :
    UU (lsuc l1  l2  l3  l4)
  is-subuniverse-connected-map-extension-condition =
    (U : B  type-subuniverse K) (u : (x : A)  pr1 (U (f x))) 
    is-contr (extension-dependent-map f (pr1  U) u)

  abstract
    is-prop-is-subuniverse-connected-map-extension-condition :
      is-prop is-subuniverse-connected-map-extension-condition
    is-prop-is-subuniverse-connected-map-extension-condition =
      is-prop-Π  U  is-prop-Π  u  is-property-is-contr))

  is-subuniverse-connected-map-extension-condition-Prop :
    Prop (lsuc l1  l2  l3  l4)
  is-subuniverse-connected-map-extension-condition-Prop =
    ( is-subuniverse-connected-map-extension-condition ,
      is-prop-is-subuniverse-connected-map-extension-condition)

Properties

Equivalent characterizations of K-connected maps

Extension condition

A map f : A → B is K-connected if and only if, for every K-valued family U over B and every map u : (x : A) → U (f x), the type of dependent extensions of u along f is contractible.

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  where

  is-subuniverse-connected-map-is-subuniverse-connected-map-extension-condition :
    is-subuniverse-connected-map-extension-condition K f 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-subuniverse-connected-map-extension-condition
    H U =
    is-equiv-is-contr-map
      ( λ u 
        is-contr-equiv
          ( extension-dependent-map f (pr1  U) u)
          ( compute-extension-fiber-precomp-Π f (pr1  U) u)
          ( H U u))

  is-subuniverse-connected-map-extension-condition-is-subuniverse-connected-map :
    is-subuniverse-connected-map K f 
    is-subuniverse-connected-map-extension-condition K f
  is-subuniverse-connected-map-extension-condition-is-subuniverse-connected-map
    H U u =
    is-contr-equiv'
      ( fiber (precomp-Π f (pr1  U)) u)
      ( compute-extension-fiber-precomp-Π f (pr1  U) u)
      ( is-contr-map-is-equiv (H U) u)

Contractible fiber-localization condition

Given a subuniverse K then a map f is K-connected if the fibers are K-equivalent to contractible types.

Proof. We have an equivalence of arrows

                               ~
    ((b : B) → unit → U b) --------> ((b : B) → U b)
               |                            |
               |                            | precomp-Π f U
               |                            |
               ∨               ~            ∨
  ((b : B) → fiber f b → U b) ---> ((a : A) → U (f a))

where the left-hand map is map-Π (λ b → precomp (terminal-map (fiber f b)) (U b)), hence if each terminal map is a K-equivalence then this is an equivalence as well. ∎

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  where

  is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers :
    ((b : B)  is-subuniverse-equiv K (terminal-map (fiber f b))) 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers H U =
    is-equiv-target-is-equiv-source-equiv-arrow
      ( map-Π  b  precomp (terminal-map (fiber f b)) (pr1 (U b))))
      ( precomp-Π f (pr1  U))
      ( ( equiv-Π-equiv-family
          ( λ b  equiv-universal-property-unit (pr1 (U b)))) ,
        ( equiv-universal-property-family-of-fibers f (pr1  U)) ,
        ( refl-htpy))
      ( is-equiv-map-Π-is-fiberwise-equiv  b  H b (U b)))

Fiber condition

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  where

  is-subuniverse-connected-map-is-subuniverse-connected-fibers :
    ( (b : B)  is-subuniverse-connected K (fiber f b)) 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-subuniverse-connected-fibers H =
    is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f
      ( is-subuniverse-equiv-terminal-map-is-subuniverse-connected K  H)

Constancy condition on fibers

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  where

  is-subuniverse-connected-map-is-subuniverse-connected-const-condition-fibers :
    ( (b : B)  is-subuniverse-connected-const-condition K (fiber f b)) 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-subuniverse-connected-const-condition-fibers
    H =
    is-subuniverse-connected-map-is-subuniverse-connected-fibers K f
      ( λ b 
        is-subuniverse-connected-is-subuniverse-connected-const-condition K
          ( H b))

Section condition

A map is K-connected if and only if its dependent precomposition maps admit sections and the fibers have K-localizations.

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  (Kfib : B  UU l3) (η : (b : B)  fiber f b  Kfib b)
  (is-htpy-injective-precomp-η-Kfib :
    (b : B) {g h : Kfib b  Kfib b} 
    precomp (η b) (Kfib b) g ~ precomp (η b) (Kfib b) h  g ~ h)
  where

  abstract
    is-contr-subuniverse-localization-fiber-has-section-precomp-Π'' :
      ( dependent-product-fiber-precomp-Π' f Kfib  a  η (f a) (a , refl))) 
      ((b : B)  is-contr (Kfib b))
    is-contr-subuniverse-localization-fiber-has-section-precomp-Π''  b =
        ( pr1 ( b) ,
          is-htpy-injective-precomp-η-Kfib b
            ( λ where (a , refl)  pr2 ( b) (a , refl)))

  abstract
    is-contr-subuniverse-localization-fiber-has-section-precomp-Π' :
      fiber (precomp-Π f Kfib)  a  η (f a) (a , refl)) 
      ((b : B)  is-contr (Kfib b))
    is-contr-subuniverse-localization-fiber-has-section-precomp-Π' (s , H) b =
      ( s b ,
        is-htpy-injective-precomp-η-Kfib b  where (a , refl)  htpy-eq H a))

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  (Kfib : (b : B)  subuniverse-localization K (fiber f b))
  (s : (U : B  type-subuniverse K)  section (precomp-Π f (pr1  U)))
  where

  is-contr-subuniverse-localization-fiber-has-section-precomp-Π :
    ((b : B)  is-contr (pr1 (Kfib b)))
  is-contr-subuniverse-localization-fiber-has-section-precomp-Π =
    is-contr-subuniverse-localization-fiber-has-section-precomp-Π' f
      ( type-subuniverse-localization K  Kfib)
      ( unit-subuniverse-localization K  Kfib)
      ( λ b H 
        htpy-eq
          ( is-injective-is-equiv
            ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b)
              ( type-subuniverse-subuniverse-localization K (Kfib b)))
            ( eq-htpy H)))
      ( is-split-surjective-section
        ( precomp-Π f (type-subuniverse-localization K  Kfib))
        ( s (type-subuniverse-subuniverse-localization K  Kfib))
        ( λ a  unit-subuniverse-localization K (Kfib (f a)) (a , refl)))

  is-subuniverse-equiv-terminal-map-fibers-has-section-precomp-Π :
    (b : B)  is-subuniverse-equiv K (terminal-map (fiber f b))
  is-subuniverse-equiv-terminal-map-fibers-has-section-precomp-Π b =
    is-subuniverse-equiv-comp K
      ( terminal-map (type-subuniverse-localization K (Kfib b)))
      ( unit-subuniverse-localization K (Kfib b))
      ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b))
      ( is-subuniverse-equiv-is-equiv K
        ( terminal-map (type-subuniverse-localization K (Kfib b)))
        ( is-equiv-terminal-map-is-contr
          ( is-contr-subuniverse-localization-fiber-has-section-precomp-Π b)))

  is-subuniverse-connected-map-has-section-precomp-Π :
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-has-section-precomp-Π =
    is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f
      ( is-subuniverse-equiv-terminal-map-fibers-has-section-precomp-Π)

Surjection condition

A map is K-connected if its dependent precomposition maps are surjective and the fibers have K-localizations.

In fact, it suffices that the fibers have K-localizations and that for every y there merely exists a u : K(fiber f y) such that for all a and p : f a = y we have a dependent identification over p

  u =ₚ^[y ↦ K(fiber f y)] (η (f a) (a , refl)).

This is in turn a slightly weaker condition than inhabitedness of the fiber of precomp-Π f over the map a ↦ η (f a) (a , refl).

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  (Kfib : B  UU l3)
  (η : (b : B)  fiber f b  Kfib b)
  (is-htpy-injective-precomp-η-Kfib :
    (b : B) {g h : Kfib b  Kfib b} 
    precomp (η b) (Kfib b) g ~ precomp (η b) (Kfib b) h  g ~ h)
  where

  abstract
    is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π' :
      ( (b : B) 
        is-inhabited
          ( family-dependent-product-fiber-precomp-Π' f Kfib
            ( λ a  η (f a) (a , refl))
            ( b))) 
      ((b : B)  is-contr (Kfib b))
    is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π'
       b =
      rec-trunc-Prop
        ( is-contr-Prop (Kfib b))
        ( λ (sb , Hb) 
          ( sb ,
            is-htpy-injective-precomp-η-Kfib b
              ( λ where (a , refl)  Hb (a , refl))))
        (  b)

  is-contr-subuniverse-localization-fiber-is-inhabited-fiber-precomp-Π :
    is-inhabited (fiber (precomp-Π f Kfib)  a  η (f a) (a , refl))) 
    ((b : B)  is-contr (Kfib b))
  is-contr-subuniverse-localization-fiber-is-inhabited-fiber-precomp-Π
    s b =
    rec-trunc-Prop
      ( is-contr-Prop (Kfib b))
      ( λ s 
        is-contr-subuniverse-localization-fiber-has-section-precomp-Π'
          f Kfib η is-htpy-injective-precomp-η-Kfib s b)
      ( s)

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  (Kfib : (b : B)  subuniverse-localization K (fiber f b))
  where

  is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π :
    ( (b : B) 
      is-inhabited
        ( family-dependent-product-fiber-precomp-Π' f
          ( type-subuniverse-localization K  Kfib)
          ( λ a  unit-subuniverse-localization K (Kfib (f a)) (a , refl))
          ( b))) 
    ((b : B)  is-contr (type-subuniverse-localization K (Kfib b)))
  is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π =
    is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π'
      ( f)
      ( type-subuniverse-localization K  Kfib)
      ( unit-subuniverse-localization K  Kfib)
      ( λ b H 
        htpy-eq
          ( is-injective-is-equiv
            ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b)
              ( type-subuniverse-subuniverse-localization K (Kfib b)))
            ( eq-htpy H)))

  is-subuniverse-equiv-terminal-map-fibers-is-inhabited-family-dependent-product-fiber-precomp-Π :
    ( (b : B) 
      is-inhabited
        ( family-dependent-product-fiber-precomp-Π' f
          ( type-subuniverse-localization K  Kfib)
          ( λ a  unit-subuniverse-localization K (Kfib (f a)) (a , refl))
          ( b))) 
    (b : B)  is-subuniverse-equiv K (terminal-map (fiber f b))
  is-subuniverse-equiv-terminal-map-fibers-is-inhabited-family-dependent-product-fiber-precomp-Π
    s b =
    is-subuniverse-equiv-comp K
      ( terminal-map (type-subuniverse-localization K (Kfib b)))
      ( unit-subuniverse-localization K (Kfib b))
      ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b))
      ( is-subuniverse-equiv-is-equiv K
        ( terminal-map (type-subuniverse-localization K (Kfib b)))
        ( is-equiv-terminal-map-is-contr
          ( is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π
            s b)))

  is-subuniverse-connected-map-is-inhabited-family-dependent-product-fiber-precomp-Π :
    ( (b : B) 
      is-inhabited
        ( family-dependent-product-fiber-precomp-Π' f
          ( type-subuniverse-localization K  Kfib)
          ( λ a  unit-subuniverse-localization K (Kfib (f a)) (a , refl))
          ( b))) 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-inhabited-family-dependent-product-fiber-precomp-Π
     =
    is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f
      ( is-subuniverse-equiv-terminal-map-fibers-is-inhabited-family-dependent-product-fiber-precomp-Π
        ( ))

  is-contr-subuniverse-localization-fiber-is-surjective-precomp-Π :
    ((U : B  type-subuniverse K)  is-surjective (precomp-Π f (pr1  U))) 
    ((b : B)  is-contr (pr1 (Kfib b)))
  is-contr-subuniverse-localization-fiber-is-surjective-precomp-Π H =
    is-contr-subuniverse-localization-fiber-is-inhabited-fiber-precomp-Π f
      ( type-subuniverse-localization K  Kfib)
      ( unit-subuniverse-localization K  Kfib)
      ( λ b H 
        htpy-eq
          ( is-injective-is-equiv
            ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b)
              ( type-subuniverse-subuniverse-localization K (Kfib b)))
            ( eq-htpy H)))
      ( H ( type-subuniverse-subuniverse-localization K  Kfib)
          ( λ a  unit-subuniverse-localization K (Kfib (f a)) (a , refl)))

  is-subuniverse-equiv-terminal-map-fibers-is-surjective-precomp-Π :
    ((U : B  type-subuniverse K)  is-surjective (precomp-Π f (pr1  U))) 
    (b : B)  is-subuniverse-equiv K (terminal-map (fiber f b))
  is-subuniverse-equiv-terminal-map-fibers-is-surjective-precomp-Π H b =
    is-subuniverse-equiv-comp K
      ( terminal-map (type-subuniverse-localization K (Kfib b)))
      ( unit-subuniverse-localization K (Kfib b))
      ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b))
      ( is-subuniverse-equiv-is-equiv K
        ( terminal-map (type-subuniverse-localization K (Kfib b)))
        ( is-equiv-terminal-map-is-contr
          ( is-contr-subuniverse-localization-fiber-is-surjective-precomp-Π
              H b)))

  is-subuniverse-connected-map-is-surjective-precomp-Π :
    ((U : B  type-subuniverse K)  is-surjective (precomp-Π f (pr1  U))) 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-surjective-precomp-Π H =
    is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f
      ( is-subuniverse-equiv-terminal-map-fibers-is-surjective-precomp-Π H)

Characterizing equality of K-connected maps

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4}
  where

  htpy-subuniverse-connected-map :
    (f g : subuniverse-connected-map K A B)  UU (l3  l4)
  htpy-subuniverse-connected-map f g =
    map-subuniverse-connected-map K f ~ map-subuniverse-connected-map K g

  refl-htpy-subuniverse-connected-map :
    (f : subuniverse-connected-map K A B)  htpy-subuniverse-connected-map f f
  refl-htpy-subuniverse-connected-map f = refl-htpy

  abstract
    is-torsorial-htpy-subuniverse-connected-map :
      (f : subuniverse-connected-map K A B) 
      is-torsorial (htpy-subuniverse-connected-map f)
    is-torsorial-htpy-subuniverse-connected-map f =
      is-torsorial-Eq-subtype
        ( is-torsorial-htpy (map-subuniverse-connected-map K f))
        ( is-prop-is-subuniverse-connected-map K)
        ( map-subuniverse-connected-map K f)
        ( refl-htpy-subuniverse-connected-map f)
        ( is-subuniverse-connected-map-subuniverse-connected-map K f)

  htpy-eq-subuniverse-connected-map :
    (f g : subuniverse-connected-map K A B) 
    f  g  htpy-subuniverse-connected-map f g
  htpy-eq-subuniverse-connected-map f g H = htpy-eq (ap pr1 H)

  abstract
    is-equiv-htpy-eq-subuniverse-connected-map :
      (f g : subuniverse-connected-map K A B) 
      is-equiv (htpy-eq-subuniverse-connected-map f g)
    is-equiv-htpy-eq-subuniverse-connected-map f =
      fundamental-theorem-id
        ( is-torsorial-htpy-subuniverse-connected-map f)
        ( htpy-eq-subuniverse-connected-map f)

  extensionality-subuniverse-connected-map :
    (f g : subuniverse-connected-map K A B) 
    (f  g)  htpy-subuniverse-connected-map f g
  pr1 (extensionality-subuniverse-connected-map f g) =
    htpy-eq-subuniverse-connected-map f g
  pr2 (extensionality-subuniverse-connected-map f g) =
    is-equiv-htpy-eq-subuniverse-connected-map f g

  eq-htpy-subuniverse-connected-map :
    (f g : subuniverse-connected-map K A B) 
    htpy-subuniverse-connected-map f g  (f  g)
  eq-htpy-subuniverse-connected-map f g =
    map-inv-equiv (extensionality-subuniverse-connected-map f g)

All maps are Contr-connected

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  is-Contr-connected-map : is-subuniverse-connected-map (is-contr-Prop {l3}) f
  is-Contr-connected-map U =
    is-equiv-is-contr
      ( precomp-Π f (pr1  U))
      ( is-contr-Π (pr2  U))
      ( is-contr-Π (pr2  U  f))

Equivalences are K-connected for any K

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4}
  where

  is-subuniverse-connected-map-is-equiv :
    {f : A  B}  is-equiv f  is-subuniverse-connected-map K f
  is-subuniverse-connected-map-is-equiv H U =
    is-equiv-precomp-Π-is-equiv H (pr1  U)

  is-subuniverse-connected-map-equiv :
    (e : A  B)  is-subuniverse-connected-map K (map-equiv e)
  is-subuniverse-connected-map-equiv e =
    is-subuniverse-connected-map-is-equiv (is-equiv-map-equiv e)

  subuniverse-connected-map-equiv :
    (A  B)  subuniverse-connected-map K A B
  subuniverse-connected-map-equiv e =
    ( map-equiv e , is-subuniverse-connected-map-equiv e)

K-connected maps are K-equivalences

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : A  B)
  where

  is-subuniverse-equiv-is-subuniverse-connected-map :
    is-subuniverse-connected-map K f  is-subuniverse-equiv K f
  is-subuniverse-equiv-is-subuniverse-connected-map F U = F  _  U)

The composition of two K-connected maps is K-connected

module _
  {l1 l2 l3 l4 l5 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} {C : UU l5}
  where

  is-subuniverse-connected-map-comp :
    {g : B  C} {f : A  B} 
    is-subuniverse-connected-map K g 
    is-subuniverse-connected-map K f 
    is-subuniverse-connected-map K (g  f)
  is-subuniverse-connected-map-comp {g} {f} G F U =
    is-equiv-comp
      ( precomp-Π f (pr1  U  g))
      ( precomp-Π g (pr1  U))
      ( G U)
      ( F (U  g))

  comp-subuniverse-connected-map :
    subuniverse-connected-map K B C 
    subuniverse-connected-map K A B 
    subuniverse-connected-map K A C
  pr1 (comp-subuniverse-connected-map g f) =
    map-subuniverse-connected-map K g  map-subuniverse-connected-map K f
  pr2 (comp-subuniverse-connected-map g f) =
    is-subuniverse-connected-map-comp
      ( is-subuniverse-connected-map-subuniverse-connected-map K g)
      ( is-subuniverse-connected-map-subuniverse-connected-map K f)

Right cancellation of K-connected maps

is-subuniverse-connected-map-left-factor :
  {l1 l2 l3 l4 l5 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} {C : UU l5}
  {g : B  C} {h : A  B} 
  is-subuniverse-connected-map K h 
  is-subuniverse-connected-map K (g  h) 
  is-subuniverse-connected-map K g
is-subuniverse-connected-map-left-factor K {g = g} {h} H GH U =
  is-equiv-right-factor
    ( precomp-Π h (pr1  U  g))
    ( precomp-Π g (pr1  U))
    ( H (U  g))
    ( GH U)

K-connected maps are closed under cobase change

module _
  {l1 l2 l3 l4 l5 l6 : Level} (K : subuniverse l1 l2)
  {S : UU l3} {A : UU l4} {B : UU l5}
  (f : S  A) (g : S  B) {X : UU l6} (c : cocone f g X)
  where

  is-subuniverse-connected-map-cobase-change' :
    dependent-pullback-property-pushout f g c 
    is-subuniverse-connected-map K g 
    is-subuniverse-connected-map K (horizontal-map-cocone f g c)
  is-subuniverse-connected-map-cobase-change' H G U =
    is-equiv-vertical-map-is-pullback _ _
      ( cone-dependent-pullback-property-pushout f g c (pr1  U))
      ( G (U  vertical-map-cocone f g c))
      ( H (pr1  U))

  is-subuniverse-connected-map-cobase-change :
    is-pushout f g c 
    is-subuniverse-connected-map K g 
    is-subuniverse-connected-map K (horizontal-map-cocone f g c)
  is-subuniverse-connected-map-cobase-change H =
    is-subuniverse-connected-map-cobase-change'
      ( dependent-pullback-property-pushout-is-pushout f g c H)

K-connected maps are closed under retracts of maps

Proof. Given a retract of maps

          i         r
    A' ------> A ------> A'
    |          |         |
  f'|     I    f    R    | f'
    ∨          ∨         ∨
    B' ------> B ------> B'
          i'        r'

with higher coherence α, and a K-valued family U over B' there is by functoriality an induced retract of dependent precomposition maps

     Π(A'),(U∘f') <--- Π(A'),(U∘r'∘i'∘f) <--- Π(A),(U∘r'∘f) <--- Π(A'),(U∘f')
          ∧                                         ∧                 ∧
          |            α* □ Π(I),(U∘r')             |      Π(R),U     |
  Π(f'),U |                                    Π(f),(U∘r')            | Π(f'),U
          |                                         |                 |
     Π(B'),U <--------- Π(B'),(U∘r'∘i') <----- Π(B),(U∘r') <--- Π(B'),(U),

and since equivalences are closed under retracts of maps, if f is K-connected then so is f'. ∎

This remains to be formalized.

The formalization below takes a shortcut via the fiber condition.

module _
  {l1 l2 l3 l4 l5 l6 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} {C : UU l5} {D : UU l6}
  {f : A  B} {g : C  D} (R : f retract-of-map g)
  where

  is-subuniverse-connected-map-retract-map' :
    ((y : D)  is-subuniverse-connected K (fiber g y)) 
    is-subuniverse-connected-map K f
  is-subuniverse-connected-map-retract-map' H =
    is-subuniverse-connected-map-is-subuniverse-connected-fibers K f
      ( λ b 
        is-subuniverse-connected-retract K
          ( retract-fiber-retract-map f g R b)
          ( H (map-codomain-inclusion-retract-map f g R b)))

The total map induced by a family of maps is K-connected if and only if all maps in the family are K-connected

module _
  {l1 l2 l3 l4 l5 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : A  UU l4} {C : A  UU l5}
  (f : (x : A)  B x  C x)
  where

  is-subuniverse-connected-map-tot-is-fiberwise-subuniverse-connected-map :
    ((x : A)  is-subuniverse-connected-map K (f x)) 
    is-subuniverse-connected-map K (tot f)
  is-subuniverse-connected-map-tot-is-fiberwise-subuniverse-connected-map H U =
    is-equiv-source-is-equiv-target-equiv-arrow
      ( precomp-Π (tot f) (pr1  U))
      ( map-Π  i  precomp-Π (f i) (pr1  U  (i ,_))))
      ( equiv-ev-pair , equiv-ev-pair , refl-htpy)
      ( is-equiv-map-Π-is-fiberwise-equiv  i  H i (U  (i ,_))))

Coproducts of K-connected maps

module _
  {l1 l2 l3 l4 l5 l6 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} {A' : UU l5} {B' : UU l6}
  {f : A  B} {f' : A'  B'}
  where

  is-subuniverse-connected-map-coproduct :
    is-subuniverse-connected-map K f 
    is-subuniverse-connected-map K f' 
    is-subuniverse-connected-map K (map-coproduct f f')
  is-subuniverse-connected-map-coproduct F F' U =
    is-equiv-source-is-equiv-target-equiv-arrow
      ( precomp-Π (map-coproduct f f') (pr1  U))
      ( map-product
        ( precomp-Π f (pr1  U  inl))
        ( precomp-Π f' (pr1  U  inr)))
      ( equiv-dependent-universal-property-coproduct
        ( pr1  U) ,
        equiv-dependent-universal-property-coproduct
          ( pr1  U  map-coproduct f f') ,
        refl-htpy)
      ( is-equiv-map-product _ _ (F (U  inl)) (F' (U  inr)))

The map on dependent pair types induced by a K-connected map is a K-equivalence

This requires the added assumption that K is closed under exponentiation by arbitrary types.

This is a generalization of Lemma 2.27 in [CORS20], since the unit map of the -localization is a -equivalence, and -equivalences are in particular -connected.

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} {B : UU l4} (f : subuniverse-connected-map K A B)
  (P : B  UU l1)
  where

  map-Σ-map-base-subuniverse-connected-map :
    Σ A (P  map-subuniverse-connected-map K f)  Σ B P
  map-Σ-map-base-subuniverse-connected-map =
    map-Σ-map-base (map-subuniverse-connected-map K f) P

  is-subuniverse-equiv-map-Σ-map-base-subuniverse-connected-map :
    ((V : UU l1) (U : type-subuniverse K)  is-in-subuniverse K (V  pr1 U)) 
    is-subuniverse-equiv K map-Σ-map-base-subuniverse-connected-map
  is-subuniverse-equiv-map-Σ-map-base-subuniverse-connected-map H U =
    is-equiv-source-is-equiv-target-equiv-arrow
      ( precomp map-Σ-map-base-subuniverse-connected-map (pr1 U))
      ( precomp-Π (map-subuniverse-connected-map K f)  y  (b : P y)  pr1 U))
      ( equiv-ev-pair , equiv-ev-pair , refl-htpy)
      ( is-subuniverse-connected-map-subuniverse-connected-map K f
        ( λ y  ((P y  pr1 U) , H (P y) U)))

References

[CORS20]
J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
[Rij19]
Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.

Recent changes