K-Connected maps, with respect to a subuniverse K
Content created by Fredrik Bakke.
Created on 2025-11-12.
Last modified on 2025-11-12.
module orthogonal-factorization-systems.connected-maps-at-subuniverses where
Imports
open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.equivalences open import foundation.equivalences-arrows open import foundation.function-extensionality open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopy-induction open import foundation.inhabited-types open import foundation.precomposition-dependent-functions open import foundation.precomposition-functions open import foundation.propositional-truncations open import foundation.retracts-of-maps open import foundation.sections open import foundation.split-surjective-maps open import foundation.subtype-identity-principle open import foundation.subuniverses open import foundation.surjective-maps open import foundation.unit-type open import foundation.universal-property-coproduct-types open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-family-of-fibers-of-maps open import foundation.universal-property-unit-type open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.embeddings open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositions open import foundation-core.subtypes open import foundation-core.torsorial-type-families open import orthogonal-factorization-systems.connected-types-at-subuniverses open import orthogonal-factorization-systems.equivalences-at-subuniverses open import orthogonal-factorization-systems.extensions-dependent-maps open import orthogonal-factorization-systems.localizations-at-subuniverses open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.dependent-pullback-property-pushouts open import synthetic-homotopy-theory.pushouts
Idea
Given a subuniverse K, a map f : A → B is said
to be
K-connected¶
if it satisfies the
universal property¶
of K-connected maps:
For every K-valued family U over B, the
dependent precomposition map
- ∘ f : ((b : B) → U b) → ((a : A) → U (f a))
is an equivalence.
We give a series of increasingly stronger conditions for a map f to be
K-connected. In particular, if unit ∈ K, then condition 4 recovers the usual
definition of a K-connected map as in Definition 5.5.1 [Rij19], i.e.,
as a map whose fibers have
contractible
K-localizations.
- The map
fisK-connected. - For every
K-valued familyUoverBand every mapu : (x : A) → U (f x), the type of extensions ofualongfis contractible. - The map
fis left orthogonal to mapsh : C → Bwhose fibers are inK. - The terminal projections of the fibers of
fareK-equivalences. - The fibers of
fareK-connected in the sense that for everyUinK, the diagonal mapU → (fiber f y → U)is an equivalence. - Every fiber of
fsatisfies the condition that for everyUinKand every functionu : fiber f y → Uthere uniquely exists an elementv : Usuch thatconst v ~ u. - The fibers of
fhaveK-localizations, and for everyythere merely exists au : K(fiber f y)such that for allaandp : f a = ywe have a dependent identification overpu =ₚ^[y ↦ K(fiber f y)] (η (f a) (a , refl)) - The fibers of
fhaveK-localizations, and the dependent precomposition map offis surjective at everyK-valued familyUoverB. - The fibers of
fhaveK-localizations, and the dependent precomposition map offhas a section at everyK-valued familyUoverB.
If the fibers of f have K-localizations then these conditions are all
equivalent. More generally we always have
that conditions 1-3 are equivalent, conditions 4-6 are equivalent, and
conditions 7-9 are equivalent.
Definitions
The predicate on maps of being K-connected
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-connected-map-Prop : Prop (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) is-subuniverse-connected-map-Prop = Π-Prop ( B → type-subuniverse K) ( λ U → is-equiv-Prop (precomp-Π f (pr1 ∘ U))) is-subuniverse-connected-map : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) is-subuniverse-connected-map = (U : B → type-subuniverse K) → is-equiv (precomp-Π f (pr1 ∘ U)) is-prop-is-subuniverse-connected-map : is-prop is-subuniverse-connected-map is-prop-is-subuniverse-connected-map = is-prop-type-Prop is-subuniverse-connected-map-Prop
The type of K-connected maps between two types
subuniverse-connected-map : {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) → UU l3 → UU l4 → UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) subuniverse-connected-map K A B = type-subtype (is-subuniverse-connected-map-Prop K {A} {B}) module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} where map-subuniverse-connected-map : subuniverse-connected-map K A B → A → B map-subuniverse-connected-map = inclusion-subtype (is-subuniverse-connected-map-Prop K) is-subuniverse-connected-map-subuniverse-connected-map : (f : subuniverse-connected-map K A B) → is-subuniverse-connected-map K (map-subuniverse-connected-map f) is-subuniverse-connected-map-subuniverse-connected-map = is-in-subtype-inclusion-subtype (is-subuniverse-connected-map-Prop K) emb-inclusion-subuniverse-connected-map : subuniverse-connected-map K A B ↪ (A → B) emb-inclusion-subuniverse-connected-map = emb-subtype (is-subuniverse-connected-map-Prop K)
The extension condition of K-connected maps
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-connected-map-extension-condition : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) is-subuniverse-connected-map-extension-condition = (U : B → type-subuniverse K) (u : (x : A) → pr1 (U (f x))) → is-contr (extension-dependent-map f (pr1 ∘ U) u) abstract is-prop-is-subuniverse-connected-map-extension-condition : is-prop is-subuniverse-connected-map-extension-condition is-prop-is-subuniverse-connected-map-extension-condition = is-prop-Π (λ U → is-prop-Π (λ u → is-property-is-contr)) is-subuniverse-connected-map-extension-condition-Prop : Prop (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) is-subuniverse-connected-map-extension-condition-Prop = ( is-subuniverse-connected-map-extension-condition , is-prop-is-subuniverse-connected-map-extension-condition)
Properties
Equivalent characterizations of K-connected maps
Extension condition
A map f : A → B is K-connected if and only if, for every K-valued family
U over B and every map u : (x : A) → U (f x), the type of dependent
extensions of u along f is contractible.
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-connected-map-is-subuniverse-connected-map-extension-condition : is-subuniverse-connected-map-extension-condition K f → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-subuniverse-connected-map-extension-condition H U = is-equiv-is-contr-map ( λ u → is-contr-equiv ( extension-dependent-map f (pr1 ∘ U) u) ( compute-extension-fiber-precomp-Π f (pr1 ∘ U) u) ( H U u)) is-subuniverse-connected-map-extension-condition-is-subuniverse-connected-map : is-subuniverse-connected-map K f → is-subuniverse-connected-map-extension-condition K f is-subuniverse-connected-map-extension-condition-is-subuniverse-connected-map H U u = is-contr-equiv' ( fiber (precomp-Π f (pr1 ∘ U)) u) ( compute-extension-fiber-precomp-Π f (pr1 ∘ U) u) ( is-contr-map-is-equiv (H U) u)
Contractible fiber-localization condition
Given a subuniverse K then a map f is K-connected if the fibers are
K-equivalent to contractible types.
Proof. We have an equivalence of arrows
~
((b : B) → unit → U b) --------> ((b : B) → U b)
| |
| | precomp-Π f U
| |
∨ ~ ∨
((b : B) → fiber f b → U b) ---> ((a : A) → U (f a))
where the left-hand map is
map-Π (λ b → precomp (terminal-map (fiber f b)) (U b)), hence if each terminal
map is a K-equivalence then this is an equivalence as well. ∎
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers : ((b : B) → is-subuniverse-equiv K (terminal-map (fiber f b))) → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers H U = is-equiv-target-is-equiv-source-equiv-arrow ( map-Π (λ b → precomp (terminal-map (fiber f b)) (pr1 (U b)))) ( precomp-Π f (pr1 ∘ U)) ( ( equiv-Π-equiv-family ( λ b → equiv-universal-property-unit (pr1 (U b)))) , ( equiv-universal-property-family-of-fibers f (pr1 ∘ U)) , ( refl-htpy)) ( is-equiv-map-Π-is-fiberwise-equiv (λ b → H b (U b)))
Fiber condition
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-connected-map-is-subuniverse-connected-fibers : ( (b : B) → is-subuniverse-connected K (fiber f b)) → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-subuniverse-connected-fibers H = is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f ( is-subuniverse-equiv-terminal-map-is-subuniverse-connected K ∘ H)
Constancy condition on fibers
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-connected-map-is-subuniverse-connected-const-condition-fibers : ( (b : B) → is-subuniverse-connected-const-condition K (fiber f b)) → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-subuniverse-connected-const-condition-fibers H = is-subuniverse-connected-map-is-subuniverse-connected-fibers K f ( λ b → is-subuniverse-connected-is-subuniverse-connected-const-condition K ( H b))
Section condition
A map is K-connected if and only if its dependent precomposition maps admit
sections and the fibers have K-localizations.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Kfib : B → UU l3) (η : (b : B) → fiber f b → Kfib b) (is-htpy-injective-precomp-η-Kfib : (b : B) {g h : Kfib b → Kfib b} → precomp (η b) (Kfib b) g ~ precomp (η b) (Kfib b) h → g ~ h) where abstract is-contr-subuniverse-localization-fiber-has-section-precomp-Π'' : ( dependent-product-fiber-precomp-Π' f Kfib (λ a → η (f a) (a , refl))) → ((b : B) → is-contr (Kfib b)) is-contr-subuniverse-localization-fiber-has-section-precomp-Π'' Fη b = ( pr1 (Fη b) , is-htpy-injective-precomp-η-Kfib b ( λ where (a , refl) → pr2 (Fη b) (a , refl))) abstract is-contr-subuniverse-localization-fiber-has-section-precomp-Π' : fiber (precomp-Π f Kfib) (λ a → η (f a) (a , refl)) → ((b : B) → is-contr (Kfib b)) is-contr-subuniverse-localization-fiber-has-section-precomp-Π' (s , H) b = ( s b , is-htpy-injective-precomp-η-Kfib b (λ where (a , refl) → htpy-eq H a)) module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) (Kfib : (b : B) → subuniverse-localization K (fiber f b)) (s : (U : B → type-subuniverse K) → section (precomp-Π f (pr1 ∘ U))) where is-contr-subuniverse-localization-fiber-has-section-precomp-Π : ((b : B) → is-contr (pr1 (Kfib b))) is-contr-subuniverse-localization-fiber-has-section-precomp-Π = is-contr-subuniverse-localization-fiber-has-section-precomp-Π' f ( type-subuniverse-localization K ∘ Kfib) ( unit-subuniverse-localization K ∘ Kfib) ( λ b H → htpy-eq ( is-injective-is-equiv ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b) ( type-subuniverse-subuniverse-localization K (Kfib b))) ( eq-htpy H))) ( is-split-surjective-section ( precomp-Π f (type-subuniverse-localization K ∘ Kfib)) ( s (type-subuniverse-subuniverse-localization K ∘ Kfib)) ( λ a → unit-subuniverse-localization K (Kfib (f a)) (a , refl))) is-subuniverse-equiv-terminal-map-fibers-has-section-precomp-Π : (b : B) → is-subuniverse-equiv K (terminal-map (fiber f b)) is-subuniverse-equiv-terminal-map-fibers-has-section-precomp-Π b = is-subuniverse-equiv-comp K ( terminal-map (type-subuniverse-localization K (Kfib b))) ( unit-subuniverse-localization K (Kfib b)) ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b)) ( is-subuniverse-equiv-is-equiv K ( terminal-map (type-subuniverse-localization K (Kfib b))) ( is-equiv-terminal-map-is-contr ( is-contr-subuniverse-localization-fiber-has-section-precomp-Π b))) is-subuniverse-connected-map-has-section-precomp-Π : is-subuniverse-connected-map K f is-subuniverse-connected-map-has-section-precomp-Π = is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f ( is-subuniverse-equiv-terminal-map-fibers-has-section-precomp-Π)
Surjection condition
A map is K-connected if its dependent precomposition maps are surjective and
the fibers have K-localizations.
In fact, it suffices that the fibers have K-localizations and that for every
y there merely exists a u : K(fiber f y) such that for all a and
p : f a = y we have a dependent identification over p
u =ₚ^[y ↦ K(fiber f y)] (η (f a) (a , refl)).
This is in turn a slightly weaker condition than inhabitedness of the fiber of
precomp-Π f over the map a ↦ η (f a) (a , refl).
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Kfib : B → UU l3) (η : (b : B) → fiber f b → Kfib b) (is-htpy-injective-precomp-η-Kfib : (b : B) {g h : Kfib b → Kfib b} → precomp (η b) (Kfib b) g ~ precomp (η b) (Kfib b) h → g ~ h) where abstract is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π' : ( (b : B) → is-inhabited ( family-dependent-product-fiber-precomp-Π' f Kfib ( λ a → η (f a) (a , refl)) ( b))) → ((b : B) → is-contr (Kfib b)) is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π' Fη b = rec-trunc-Prop ( is-contr-Prop (Kfib b)) ( λ (sb , Hb) → ( sb , is-htpy-injective-precomp-η-Kfib b ( λ where (a , refl) → Hb (a , refl)))) ( Fη b) is-contr-subuniverse-localization-fiber-is-inhabited-fiber-precomp-Π : is-inhabited (fiber (precomp-Π f Kfib) (λ a → η (f a) (a , refl))) → ((b : B) → is-contr (Kfib b)) is-contr-subuniverse-localization-fiber-is-inhabited-fiber-precomp-Π s b = rec-trunc-Prop ( is-contr-Prop (Kfib b)) ( λ s → is-contr-subuniverse-localization-fiber-has-section-precomp-Π' f Kfib η is-htpy-injective-precomp-η-Kfib s b) ( s) module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) (Kfib : (b : B) → subuniverse-localization K (fiber f b)) where is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π : ( (b : B) → is-inhabited ( family-dependent-product-fiber-precomp-Π' f ( type-subuniverse-localization K ∘ Kfib) ( λ a → unit-subuniverse-localization K (Kfib (f a)) (a , refl)) ( b))) → ((b : B) → is-contr (type-subuniverse-localization K (Kfib b))) is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π = is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π' ( f) ( type-subuniverse-localization K ∘ Kfib) ( unit-subuniverse-localization K ∘ Kfib) ( λ b H → htpy-eq ( is-injective-is-equiv ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b) ( type-subuniverse-subuniverse-localization K (Kfib b))) ( eq-htpy H))) is-subuniverse-equiv-terminal-map-fibers-is-inhabited-family-dependent-product-fiber-precomp-Π : ( (b : B) → is-inhabited ( family-dependent-product-fiber-precomp-Π' f ( type-subuniverse-localization K ∘ Kfib) ( λ a → unit-subuniverse-localization K (Kfib (f a)) (a , refl)) ( b))) → (b : B) → is-subuniverse-equiv K (terminal-map (fiber f b)) is-subuniverse-equiv-terminal-map-fibers-is-inhabited-family-dependent-product-fiber-precomp-Π s b = is-subuniverse-equiv-comp K ( terminal-map (type-subuniverse-localization K (Kfib b))) ( unit-subuniverse-localization K (Kfib b)) ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b)) ( is-subuniverse-equiv-is-equiv K ( terminal-map (type-subuniverse-localization K (Kfib b))) ( is-equiv-terminal-map-is-contr ( is-contr-subuniverse-localization-fiber-is-inhabited-family-dependent-product-fiber-precomp-Π s b))) is-subuniverse-connected-map-is-inhabited-family-dependent-product-fiber-precomp-Π : ( (b : B) → is-inhabited ( family-dependent-product-fiber-precomp-Π' f ( type-subuniverse-localization K ∘ Kfib) ( λ a → unit-subuniverse-localization K (Kfib (f a)) (a , refl)) ( b))) → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-inhabited-family-dependent-product-fiber-precomp-Π Fη = is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f ( is-subuniverse-equiv-terminal-map-fibers-is-inhabited-family-dependent-product-fiber-precomp-Π ( Fη)) is-contr-subuniverse-localization-fiber-is-surjective-precomp-Π : ((U : B → type-subuniverse K) → is-surjective (precomp-Π f (pr1 ∘ U))) → ((b : B) → is-contr (pr1 (Kfib b))) is-contr-subuniverse-localization-fiber-is-surjective-precomp-Π H = is-contr-subuniverse-localization-fiber-is-inhabited-fiber-precomp-Π f ( type-subuniverse-localization K ∘ Kfib) ( unit-subuniverse-localization K ∘ Kfib) ( λ b H → htpy-eq ( is-injective-is-equiv ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b) ( type-subuniverse-subuniverse-localization K (Kfib b))) ( eq-htpy H))) ( H ( type-subuniverse-subuniverse-localization K ∘ Kfib) ( λ a → unit-subuniverse-localization K (Kfib (f a)) (a , refl))) is-subuniverse-equiv-terminal-map-fibers-is-surjective-precomp-Π : ((U : B → type-subuniverse K) → is-surjective (precomp-Π f (pr1 ∘ U))) → (b : B) → is-subuniverse-equiv K (terminal-map (fiber f b)) is-subuniverse-equiv-terminal-map-fibers-is-surjective-precomp-Π H b = is-subuniverse-equiv-comp K ( terminal-map (type-subuniverse-localization K (Kfib b))) ( unit-subuniverse-localization K (Kfib b)) ( is-subuniverse-equiv-unit-subuniverse-localization K (Kfib b)) ( is-subuniverse-equiv-is-equiv K ( terminal-map (type-subuniverse-localization K (Kfib b))) ( is-equiv-terminal-map-is-contr ( is-contr-subuniverse-localization-fiber-is-surjective-precomp-Π H b))) is-subuniverse-connected-map-is-surjective-precomp-Π : ((U : B → type-subuniverse K) → is-surjective (precomp-Π f (pr1 ∘ U))) → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-surjective-precomp-Π H = is-subuniverse-connected-map-is-subuniverse-equiv-terminal-map-fibers K f ( is-subuniverse-equiv-terminal-map-fibers-is-surjective-precomp-Π H)
Characterizing equality of K-connected maps
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} where htpy-subuniverse-connected-map : (f g : subuniverse-connected-map K A B) → UU (l3 ⊔ l4) htpy-subuniverse-connected-map f g = map-subuniverse-connected-map K f ~ map-subuniverse-connected-map K g refl-htpy-subuniverse-connected-map : (f : subuniverse-connected-map K A B) → htpy-subuniverse-connected-map f f refl-htpy-subuniverse-connected-map f = refl-htpy abstract is-torsorial-htpy-subuniverse-connected-map : (f : subuniverse-connected-map K A B) → is-torsorial (htpy-subuniverse-connected-map f) is-torsorial-htpy-subuniverse-connected-map f = is-torsorial-Eq-subtype ( is-torsorial-htpy (map-subuniverse-connected-map K f)) ( is-prop-is-subuniverse-connected-map K) ( map-subuniverse-connected-map K f) ( refl-htpy-subuniverse-connected-map f) ( is-subuniverse-connected-map-subuniverse-connected-map K f) htpy-eq-subuniverse-connected-map : (f g : subuniverse-connected-map K A B) → f = g → htpy-subuniverse-connected-map f g htpy-eq-subuniverse-connected-map f g H = htpy-eq (ap pr1 H) abstract is-equiv-htpy-eq-subuniverse-connected-map : (f g : subuniverse-connected-map K A B) → is-equiv (htpy-eq-subuniverse-connected-map f g) is-equiv-htpy-eq-subuniverse-connected-map f = fundamental-theorem-id ( is-torsorial-htpy-subuniverse-connected-map f) ( htpy-eq-subuniverse-connected-map f) extensionality-subuniverse-connected-map : (f g : subuniverse-connected-map K A B) → (f = g) ≃ htpy-subuniverse-connected-map f g pr1 (extensionality-subuniverse-connected-map f g) = htpy-eq-subuniverse-connected-map f g pr2 (extensionality-subuniverse-connected-map f g) = is-equiv-htpy-eq-subuniverse-connected-map f g eq-htpy-subuniverse-connected-map : (f g : subuniverse-connected-map K A B) → htpy-subuniverse-connected-map f g → (f = g) eq-htpy-subuniverse-connected-map f g = map-inv-equiv (extensionality-subuniverse-connected-map f g)
All maps are Contr-connected
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-Contr-connected-map : is-subuniverse-connected-map (is-contr-Prop {l3}) f is-Contr-connected-map U = is-equiv-is-contr ( precomp-Π f (pr1 ∘ U)) ( is-contr-Π (pr2 ∘ U)) ( is-contr-Π (pr2 ∘ U ∘ f))
Equivalences are K-connected for any K
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} where is-subuniverse-connected-map-is-equiv : {f : A → B} → is-equiv f → is-subuniverse-connected-map K f is-subuniverse-connected-map-is-equiv H U = is-equiv-precomp-Π-is-equiv H (pr1 ∘ U) is-subuniverse-connected-map-equiv : (e : A ≃ B) → is-subuniverse-connected-map K (map-equiv e) is-subuniverse-connected-map-equiv e = is-subuniverse-connected-map-is-equiv (is-equiv-map-equiv e) subuniverse-connected-map-equiv : (A ≃ B) → subuniverse-connected-map K A B subuniverse-connected-map-equiv e = ( map-equiv e , is-subuniverse-connected-map-equiv e)
K-connected maps are K-equivalences
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : A → B) where is-subuniverse-equiv-is-subuniverse-connected-map : is-subuniverse-connected-map K f → is-subuniverse-equiv K f is-subuniverse-equiv-is-subuniverse-connected-map F U = F (λ _ → U)
The composition of two K-connected maps is K-connected
module _ {l1 l2 l3 l4 l5 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} {C : UU l5} where is-subuniverse-connected-map-comp : {g : B → C} {f : A → B} → is-subuniverse-connected-map K g → is-subuniverse-connected-map K f → is-subuniverse-connected-map K (g ∘ f) is-subuniverse-connected-map-comp {g} {f} G F U = is-equiv-comp ( precomp-Π f (pr1 ∘ U ∘ g)) ( precomp-Π g (pr1 ∘ U)) ( G U) ( F (U ∘ g)) comp-subuniverse-connected-map : subuniverse-connected-map K B C → subuniverse-connected-map K A B → subuniverse-connected-map K A C pr1 (comp-subuniverse-connected-map g f) = map-subuniverse-connected-map K g ∘ map-subuniverse-connected-map K f pr2 (comp-subuniverse-connected-map g f) = is-subuniverse-connected-map-comp ( is-subuniverse-connected-map-subuniverse-connected-map K g) ( is-subuniverse-connected-map-subuniverse-connected-map K f)
Right cancellation of K-connected maps
is-subuniverse-connected-map-left-factor : {l1 l2 l3 l4 l5 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} {C : UU l5} {g : B → C} {h : A → B} → is-subuniverse-connected-map K h → is-subuniverse-connected-map K (g ∘ h) → is-subuniverse-connected-map K g is-subuniverse-connected-map-left-factor K {g = g} {h} H GH U = is-equiv-right-factor ( precomp-Π h (pr1 ∘ U ∘ g)) ( precomp-Π g (pr1 ∘ U)) ( H (U ∘ g)) ( GH U)
K-connected maps are closed under cobase change
module _ {l1 l2 l3 l4 l5 l6 : Level} (K : subuniverse l1 l2) {S : UU l3} {A : UU l4} {B : UU l5} (f : S → A) (g : S → B) {X : UU l6} (c : cocone f g X) where is-subuniverse-connected-map-cobase-change' : dependent-pullback-property-pushout f g c → is-subuniverse-connected-map K g → is-subuniverse-connected-map K (horizontal-map-cocone f g c) is-subuniverse-connected-map-cobase-change' H G U = is-equiv-vertical-map-is-pullback _ _ ( cone-dependent-pullback-property-pushout f g c (pr1 ∘ U)) ( G (U ∘ vertical-map-cocone f g c)) ( H (pr1 ∘ U)) is-subuniverse-connected-map-cobase-change : is-pushout f g c → is-subuniverse-connected-map K g → is-subuniverse-connected-map K (horizontal-map-cocone f g c) is-subuniverse-connected-map-cobase-change H = is-subuniverse-connected-map-cobase-change' ( dependent-pullback-property-pushout-is-pushout f g c H)
K-connected maps are closed under retracts of maps
Proof. Given a retract of maps
i r
A' ------> A ------> A'
| | |
f'| I f R | f'
∨ ∨ ∨
B' ------> B ------> B'
i' r'
with higher coherence α, and a K-valued family U over B' there is by
functoriality an induced retract of dependent precomposition maps
Π(A'),(U∘f') <--- Π(A'),(U∘r'∘i'∘f) <--- Π(A),(U∘r'∘f) <--- Π(A'),(U∘f')
∧ ∧ ∧
| α* □ Π(I),(U∘r') | Π(R),U |
Π(f'),U | Π(f),(U∘r') | Π(f'),U
| | |
Π(B'),U <--------- Π(B'),(U∘r'∘i') <----- Π(B),(U∘r') <--- Π(B'),(U),
and since equivalences are closed under retracts of maps, if f is
K-connected then so is f'. ∎
This remains to be formalized.
The formalization below takes a shortcut via the fiber condition.
module _ {l1 l2 l3 l4 l5 l6 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} {C : UU l5} {D : UU l6} {f : A → B} {g : C → D} (R : f retract-of-map g) where is-subuniverse-connected-map-retract-map' : ((y : D) → is-subuniverse-connected K (fiber g y)) → is-subuniverse-connected-map K f is-subuniverse-connected-map-retract-map' H = is-subuniverse-connected-map-is-subuniverse-connected-fibers K f ( λ b → is-subuniverse-connected-retract K ( retract-fiber-retract-map f g R b) ( H (map-codomain-inclusion-retract-map f g R b)))
The total map induced by a family of maps is K-connected if and only if all maps in the family are K-connected
module _ {l1 l2 l3 l4 l5 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : A → UU l4} {C : A → UU l5} (f : (x : A) → B x → C x) where is-subuniverse-connected-map-tot-is-fiberwise-subuniverse-connected-map : ((x : A) → is-subuniverse-connected-map K (f x)) → is-subuniverse-connected-map K (tot f) is-subuniverse-connected-map-tot-is-fiberwise-subuniverse-connected-map H U = is-equiv-source-is-equiv-target-equiv-arrow ( precomp-Π (tot f) (pr1 ∘ U)) ( map-Π (λ i → precomp-Π (f i) (pr1 ∘ U ∘ (i ,_)))) ( equiv-ev-pair , equiv-ev-pair , refl-htpy) ( is-equiv-map-Π-is-fiberwise-equiv (λ i → H i (U ∘ (i ,_))))
Coproducts of K-connected maps
module _ {l1 l2 l3 l4 l5 l6 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} {A' : UU l5} {B' : UU l6} {f : A → B} {f' : A' → B'} where is-subuniverse-connected-map-coproduct : is-subuniverse-connected-map K f → is-subuniverse-connected-map K f' → is-subuniverse-connected-map K (map-coproduct f f') is-subuniverse-connected-map-coproduct F F' U = is-equiv-source-is-equiv-target-equiv-arrow ( precomp-Π (map-coproduct f f') (pr1 ∘ U)) ( map-product ( precomp-Π f (pr1 ∘ U ∘ inl)) ( precomp-Π f' (pr1 ∘ U ∘ inr))) ( equiv-dependent-universal-property-coproduct ( pr1 ∘ U) , equiv-dependent-universal-property-coproduct ( pr1 ∘ U ∘ map-coproduct f f') , refl-htpy) ( is-equiv-map-product _ _ (F (U ∘ inl)) (F' (U ∘ inr)))
The map on dependent pair types induced by a K-connected map is a K-equivalence
This requires the added assumption that K is closed under exponentiation by
arbitrary types.
This is a generalization of Lemma 2.27 in [CORS20], since the unit map of the -localization is a -equivalence, and -equivalences are in particular -connected.
module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} {B : UU l4} (f : subuniverse-connected-map K A B) (P : B → UU l1) where map-Σ-map-base-subuniverse-connected-map : Σ A (P ∘ map-subuniverse-connected-map K f) → Σ B P map-Σ-map-base-subuniverse-connected-map = map-Σ-map-base (map-subuniverse-connected-map K f) P is-subuniverse-equiv-map-Σ-map-base-subuniverse-connected-map : ((V : UU l1) (U : type-subuniverse K) → is-in-subuniverse K (V → pr1 U)) → is-subuniverse-equiv K map-Σ-map-base-subuniverse-connected-map is-subuniverse-equiv-map-Σ-map-base-subuniverse-connected-map H U = is-equiv-source-is-equiv-target-equiv-arrow ( precomp map-Σ-map-base-subuniverse-connected-map (pr1 U)) ( precomp-Π (map-subuniverse-connected-map K f) (λ y → (b : P y) → pr1 U)) ( equiv-ev-pair , equiv-ev-pair , refl-htpy) ( is-subuniverse-connected-map-subuniverse-connected-map K f ( λ y → ((P y → pr1 U) , H (P y) U)))
References
- [CORS20]
- J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2025-11-12. Fredrik Bakke. Subuniverse equivalences and connected maps (#1669).