Transport-split type families

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2024-01-31.
Last modified on 2024-01-31.

module foundation.transport-split-type-families where
open import elementary-number-theory.natural-numbers

open import foundation.action-on-equivalences-functions
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalence-extensionality
open import foundation.equivalence-injective-type-families
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.fundamental-theorem-of-identity-types
open import foundation.iterated-dependent-product-types
open import foundation.transport-along-identifications
open import foundation.unit-type
open import foundation.univalent-type-families
open import foundation.universal-property-identity-systems
open import foundation.universe-levels

open import foundation-core.embeddings
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.sections
open import foundation-core.torsorial-type-families


A type family B over A is said to be transport-split if the map

  equiv-tr B : x = y → B x ≃ B y

admits a section for every x y : A. By a corollary of the fundamental theorem of identity types every transport-split type family is univalent, meaning that equiv-tr B is in fact an equivalence for all x y : A.


Transport-split type families

is-transport-split :
  {l1 l2 : Level} {A : UU l1}  (A  UU l2)  UU (l1  l2)
is-transport-split {A = A} B =
  (x y : A)  section  (p : x  y)  equiv-tr B p)


Transport-split type families are equivalence injective

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}

  is-equivalence-injective-is-transport-split :
    is-transport-split B  is-equivalence-injective B
  is-equivalence-injective-is-transport-split s {x} {y} =
    map-section (equiv-tr B) (s x y)

Transport-split type families are univalent

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}

  is-transport-split-is-univalent :
    is-univalent B  is-transport-split B
  is-transport-split-is-univalent U x y = section-is-equiv (U x y)

  is-univalent-is-transport-split :
    is-transport-split B  is-univalent B
  is-univalent-is-transport-split s x =
    fundamental-theorem-id-section x  y  equiv-tr B) (s x)

The type is-transport-split is a proposition

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}

  is-proof-irrelevant-is-transport-split :
    is-proof-irrelevant (is-transport-split B)
  is-proof-irrelevant-is-transport-split s =
    is-contr-iterated-Π 2
      ( λ x y 
        is-contr-section-is-equiv (is-univalent-is-transport-split s x y))

  is-prop-is-transport-split :
    is-prop (is-transport-split B)
  is-prop-is-transport-split =
    is-prop-is-proof-irrelevant is-proof-irrelevant-is-transport-split

Assuming the univalence axiom, type families are transport-split if and only if they are embeddings as maps

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}

  is-emb-is-transport-split : is-transport-split B  is-emb B
  is-emb-is-transport-split s =
    is-emb-is-univalent (is-univalent-is-transport-split s)

  is-transport-split-is-emb : is-emb B  is-transport-split B
  is-transport-split-is-emb H =
    is-transport-split-is-univalent (is-univalent-is-emb H)

Transport-split type families satisfy equivalence induction

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  (s : is-transport-split B)

  is-torsorial-fam-equiv-is-transport-split :
    {x : A}  is-torsorial  y  B x  B y)
  is-torsorial-fam-equiv-is-transport-split =
    is-torsorial-fam-equiv-is-univalent (is-univalent-is-transport-split s)

  dependent-universal-property-identity-system-fam-equiv-is-transport-split :
    {x : A} 
    dependent-universal-property-identity-system  y  B x  B y) id-equiv
  dependent-universal-property-identity-system-fam-equiv-is-transport-split =
      ( id-equiv)
      ( is-torsorial-fam-equiv-is-transport-split)

See also

Recent changes