Resizing preorders
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.resizing-preorders where
Imports
open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.small-types open import foundation.universe-levels open import order-theory.order-preserving-maps-preorders open import order-theory.preorders
Idea
Given a preorder P
on a
small carrier type X
, then there is an equivalent
resized preorder¶ on the small equivalent.
Definition
Resizing the underlying type of a preorder
module _ {l1 l2 l3 : Level} where resize-Preorder : (P : Preorder l1 l2) → is-small l3 (type-Preorder P) → Preorder l3 l2 resize-Preorder P (A , e) = ( ( A) , ( λ x y → leq-prop-Preorder P (map-inv-equiv e x) (map-inv-equiv e y)) , ( λ x → refl-leq-Preorder P (map-inv-equiv e x)) , ( λ x y z → transitive-leq-Preorder P ( map-inv-equiv e x) ( map-inv-equiv e y) ( map-inv-equiv e z)))
The resizing structure equivalence
module _ {l1 l2 l3 : Level} (P : Preorder l1 l2) (H : is-small l3 (type-Preorder P)) where hom-resize-Preorder : hom-Preorder (resize-Preorder P H) P pr1 hom-resize-Preorder = map-inv-equiv-is-small H pr2 hom-resize-Preorder _ _ = id hom-inv-resize-Preorder : hom-Preorder P (resize-Preorder P H) pr1 hom-inv-resize-Preorder = map-equiv-is-small H pr2 hom-inv-resize-Preorder x y v = concatenate-leq-eq-Preorder P ( concatenate-eq-leq-Preorder P ( is-retraction-map-inv-equiv-is-small H x) ( v)) ( inv (is-retraction-map-inv-equiv-is-small H y)) is-right-inverse-hom-inv-resize-Preorder : htpy-hom-Preorder P P ( comp-hom-Preorder P (resize-Preorder P H) P ( hom-resize-Preorder) ( hom-inv-resize-Preorder)) ( id-hom-Preorder P) is-right-inverse-hom-inv-resize-Preorder = is-retraction-map-inv-equiv-is-small H is-left-inverse-hom-inv-resize-Preorder : htpy-hom-Preorder (resize-Preorder P H) (resize-Preorder P H) ( comp-hom-Preorder ( resize-Preorder P H) ( P) ( resize-Preorder P H) ( hom-inv-resize-Preorder) ( hom-resize-Preorder)) ( id-hom-Preorder (resize-Preorder P H)) is-left-inverse-hom-inv-resize-Preorder = is-section-map-inv-equiv-is-small H
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).