K-connected maps over a type, with respect to a subuniverse K
Content created by Fredrik Bakke.
Created on 2025-11-12.
Last modified on 2025-11-12.
module orthogonal-factorization-systems.connected-maps-at-subuniverses-over-type where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.structure-identity-principle open import foundation.subuniverses open import foundation.univalence open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.torsorial-type-families open import orthogonal-factorization-systems.connected-maps-at-subuniverses
Idea
Given a subuniverse K we consider the type of
K-connected maps
into a type X. I.e., the collection of types A
equipped with K-connected maps from A into X.
Definitions
The type of K-connected maps over a type
Subuniverse-Connected-Map : {l1 l2 l3 : Level} (l4 : Level) (K : subuniverse l1 l2) (A : UU l3) → UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ lsuc l4) Subuniverse-Connected-Map l4 K A = Σ (UU l4) (subuniverse-connected-map K A) module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} (f : Subuniverse-Connected-Map l4 K A) where type-Subuniverse-Connected-Map : UU l4 type-Subuniverse-Connected-Map = pr1 f subuniverse-connected-map-Subuniverse-Connected-Map : subuniverse-connected-map K A type-Subuniverse-Connected-Map subuniverse-connected-map-Subuniverse-Connected-Map = pr2 f map-Subuniverse-Connected-Map : A → type-Subuniverse-Connected-Map map-Subuniverse-Connected-Map = map-subuniverse-connected-map K ( subuniverse-connected-map-Subuniverse-Connected-Map) is-subuniverse-connected-map-Subuniverse-Connected-Map : is-subuniverse-connected-map K map-Subuniverse-Connected-Map is-subuniverse-connected-map-Subuniverse-Connected-Map = is-subuniverse-connected-map-subuniverse-connected-map K ( subuniverse-connected-map-Subuniverse-Connected-Map)
Properties
Characterization of equality
equiv-Subuniverse-Connected-Map : {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} → (f g : Subuniverse-Connected-Map l4 K A) → UU (l3 ⊔ l4) equiv-Subuniverse-Connected-Map K f g = Σ ( type-Subuniverse-Connected-Map K f ≃ type-Subuniverse-Connected-Map K g) ( λ e → map-equiv e ∘ map-Subuniverse-Connected-Map K f ~ map-Subuniverse-Connected-Map K g) module _ {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} (f : Subuniverse-Connected-Map l4 K A) where id-equiv-Subuniverse-Connected-Map : equiv-Subuniverse-Connected-Map K f f id-equiv-Subuniverse-Connected-Map = (id-equiv , refl-htpy) abstract is-torsorial-equiv-Subuniverse-Connected-Map : is-torsorial (equiv-Subuniverse-Connected-Map K f) is-torsorial-equiv-Subuniverse-Connected-Map = is-torsorial-Eq-structure ( is-torsorial-equiv (type-Subuniverse-Connected-Map K f)) ( type-Subuniverse-Connected-Map K f , id-equiv) ( is-torsorial-htpy-subuniverse-connected-map K ( subuniverse-connected-map-Subuniverse-Connected-Map K f)) equiv-eq-Subuniverse-Connected-Map : (g : Subuniverse-Connected-Map l4 K A) → f = g → equiv-Subuniverse-Connected-Map K f g equiv-eq-Subuniverse-Connected-Map .f refl = id-equiv-Subuniverse-Connected-Map abstract is-equiv-equiv-eq-Subuniverse-Connected-Map : (g : Subuniverse-Connected-Map l4 K A) → is-equiv (equiv-eq-Subuniverse-Connected-Map g) is-equiv-equiv-eq-Subuniverse-Connected-Map = fundamental-theorem-id ( is-torsorial-equiv-Subuniverse-Connected-Map) ( equiv-eq-Subuniverse-Connected-Map) extensionality-Subuniverse-Connected-Map : (g : Subuniverse-Connected-Map l4 K A) → (f = g) ≃ equiv-Subuniverse-Connected-Map K f g extensionality-Subuniverse-Connected-Map g = ( equiv-eq-Subuniverse-Connected-Map g , is-equiv-equiv-eq-Subuniverse-Connected-Map g) eq-equiv-Subuniverse-Connected-Map : (g : Subuniverse-Connected-Map l4 K A) → equiv-Subuniverse-Connected-Map K f g → f = g eq-equiv-Subuniverse-Connected-Map g = map-inv-equiv (extensionality-Subuniverse-Connected-Map g)
Recent changes
- 2025-11-12. Fredrik Bakke. Subuniverse equivalences and connected maps (#1669).