K-connected maps over a type, with respect to a subuniverse K

Content created by Fredrik Bakke.

Created on 2025-11-12.
Last modified on 2025-11-12.

module orthogonal-factorization-systems.connected-maps-at-subuniverses-over-type where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.fundamental-theorem-of-identity-types
open import foundation.structure-identity-principle
open import foundation.subuniverses
open import foundation.univalence
open import foundation.universe-levels

open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.torsorial-type-families

open import orthogonal-factorization-systems.connected-maps-at-subuniverses

Idea

Given a subuniverse K we consider the type of K-connected maps into a type X. I.e., the collection of types A equipped with K-connected maps from A into X.

Definitions

The type of K-connected maps over a type

Subuniverse-Connected-Map :
  {l1 l2 l3 : Level} (l4 : Level) (K : subuniverse l1 l2) (A : UU l3) 
  UU (lsuc l1  l2  l3  lsuc l4)
Subuniverse-Connected-Map l4 K A = Σ (UU l4) (subuniverse-connected-map K A)

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2)
  {A : UU l3} (f : Subuniverse-Connected-Map l4 K A)
  where

  type-Subuniverse-Connected-Map : UU l4
  type-Subuniverse-Connected-Map = pr1 f

  subuniverse-connected-map-Subuniverse-Connected-Map :
    subuniverse-connected-map K A type-Subuniverse-Connected-Map
  subuniverse-connected-map-Subuniverse-Connected-Map = pr2 f

  map-Subuniverse-Connected-Map : A  type-Subuniverse-Connected-Map
  map-Subuniverse-Connected-Map =
    map-subuniverse-connected-map K
      ( subuniverse-connected-map-Subuniverse-Connected-Map)

  is-subuniverse-connected-map-Subuniverse-Connected-Map :
    is-subuniverse-connected-map K map-Subuniverse-Connected-Map
  is-subuniverse-connected-map-Subuniverse-Connected-Map =
    is-subuniverse-connected-map-subuniverse-connected-map K
      ( subuniverse-connected-map-Subuniverse-Connected-Map)

Properties

Characterization of equality

equiv-Subuniverse-Connected-Map :
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} 
  (f g : Subuniverse-Connected-Map l4 K A)  UU (l3  l4)
equiv-Subuniverse-Connected-Map K f g =
  Σ ( type-Subuniverse-Connected-Map K f  type-Subuniverse-Connected-Map K g)
    ( λ e 
      map-equiv e  map-Subuniverse-Connected-Map K f ~
      map-Subuniverse-Connected-Map K g)

module _
  {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3}
  (f : Subuniverse-Connected-Map l4 K A)
  where

  id-equiv-Subuniverse-Connected-Map : equiv-Subuniverse-Connected-Map K f f
  id-equiv-Subuniverse-Connected-Map = (id-equiv , refl-htpy)

  abstract
    is-torsorial-equiv-Subuniverse-Connected-Map :
      is-torsorial (equiv-Subuniverse-Connected-Map K f)
    is-torsorial-equiv-Subuniverse-Connected-Map =
      is-torsorial-Eq-structure
        ( is-torsorial-equiv (type-Subuniverse-Connected-Map K f))
        ( type-Subuniverse-Connected-Map K f , id-equiv)
        ( is-torsorial-htpy-subuniverse-connected-map K
          ( subuniverse-connected-map-Subuniverse-Connected-Map K f))

  equiv-eq-Subuniverse-Connected-Map :
    (g : Subuniverse-Connected-Map l4 K A) 
    f  g  equiv-Subuniverse-Connected-Map K f g
  equiv-eq-Subuniverse-Connected-Map .f refl =
    id-equiv-Subuniverse-Connected-Map

  abstract
    is-equiv-equiv-eq-Subuniverse-Connected-Map :
      (g : Subuniverse-Connected-Map l4 K A) 
      is-equiv (equiv-eq-Subuniverse-Connected-Map g)
    is-equiv-equiv-eq-Subuniverse-Connected-Map =
      fundamental-theorem-id
        ( is-torsorial-equiv-Subuniverse-Connected-Map)
        ( equiv-eq-Subuniverse-Connected-Map)

  extensionality-Subuniverse-Connected-Map :
    (g : Subuniverse-Connected-Map l4 K A) 
    (f  g)  equiv-Subuniverse-Connected-Map K f g
  extensionality-Subuniverse-Connected-Map g =
    ( equiv-eq-Subuniverse-Connected-Map g ,
      is-equiv-equiv-eq-Subuniverse-Connected-Map g)

  eq-equiv-Subuniverse-Connected-Map :
    (g : Subuniverse-Connected-Map l4 K A) 
    equiv-Subuniverse-Connected-Map K f g  f  g
  eq-equiv-Subuniverse-Connected-Map g =
    map-inv-equiv (extensionality-Subuniverse-Connected-Map g)

Recent changes