The decidable total order of integers
Content created by Fredrik Bakke and malarbol.
Created on 2024-03-28.
Last modified on 2024-03-28.
module elementary-number-theory.decidable-total-order-integers where
Imports
open import elementary-number-theory.inequality-integers open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import order-theory.decidable-total-orders open import order-theory.total-orders
Idea
The type of integers equipped with its standard ordering relation forms a decidable total order.
Definition
is-total-leq-ℤ : is-total-Poset ℤ-Poset is-total-leq-ℤ x y = unit-trunc-Prop (linear-leq-ℤ x y) ℤ-Total-Order : Total-Order lzero lzero pr1 ℤ-Total-Order = ℤ-Poset pr2 ℤ-Total-Order = is-total-leq-ℤ ℤ-Decidable-Total-Order : Decidable-Total-Order lzero lzero pr1 ℤ-Decidable-Total-Order = ℤ-Poset pr1 (pr2 ℤ-Decidable-Total-Order) = is-total-leq-ℤ pr2 (pr2 ℤ-Decidable-Total-Order) = is-decidable-leq-ℤ
Recent changes
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).