Subsets of abelian groups
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2024-04-20.
module group-theory.subsets-abelian-groups where
Imports
open import foundation.large-locale-of-subtypes open import foundation.powersets open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.subsets-groups open import order-theory.large-locales open import order-theory.large-posets
Idea
A subset of an abelian group A
is a
subtype of the underlying type of A
. The
large poset of all subsets of A
is called the
powerset of A
.
Definitions
The large locale of subsets of an abelian group
module _ {l1 : Level} (G : Ab l1) where powerset-large-locale-Ab : Large-Locale (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) lzero powerset-large-locale-Ab = powerset-Large-Locale (type-Ab G)
The large poset of subsets of an abelian group
module _ {l1 : Level} (G : Ab l1) where powerset-large-poset-Ab : Large-Poset (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) powerset-large-poset-Ab = large-poset-Large-Locale (powerset-large-locale-Ab G)
Subsets of abelian groups
subset-Ab : (l : Level) {l1 : Level} (A : Ab l1) → UU (lsuc l ⊔ l1) subset-Ab l A = subset-Group l (group-Ab A) is-set-subset-Ab : (l : Level) {l1 : Level} (A : Ab l1) → is-set (subset-Ab l A) is-set-subset-Ab l A = is-set-subset-Group (group-Ab A)
Recent changes
- 2024-04-20. Fredrik Bakke. chore: Remove redundant parentheses in universe level expressions (#1125).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).