Subsets of abelian groups

Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.

Created on 2023-06-08.
Last modified on 2024-04-20.

module group-theory.subsets-abelian-groups where
Imports
open import foundation.large-locale-of-subtypes
open import foundation.powersets
open import foundation.sets
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.subsets-groups

open import order-theory.large-locales
open import order-theory.large-posets

Idea

A subset of an abelian group A is a subtype of the underlying type of A. The large poset of all subsets of A is called the powerset of A.

Definitions

The large locale of subsets of an abelian group

module _
  {l1 : Level} (G : Ab l1)
  where

  powerset-large-locale-Ab :
    Large-Locale  l2  l1  lsuc l2)  l2 l3  l1  l2  l3) lzero
  powerset-large-locale-Ab = powerset-Large-Locale (type-Ab G)

The large poset of subsets of an abelian group

module _
  {l1 : Level} (G : Ab l1)
  where

  powerset-large-poset-Ab :
    Large-Poset  l2  l1  lsuc l2)  l2 l3  l1  l2  l3)
  powerset-large-poset-Ab =
    large-poset-Large-Locale (powerset-large-locale-Ab G)

Subsets of abelian groups

subset-Ab :
  (l : Level) {l1 : Level} (A : Ab l1)  UU (lsuc l  l1)
subset-Ab l A = subset-Group l (group-Ab A)

is-set-subset-Ab :
  (l : Level) {l1 : Level} (A : Ab l1)  is-set (subset-Ab l A)
is-set-subset-Ab l A = is-set-subset-Group (group-Ab A)

Recent changes