Sums of finite sequences of elements in abelian groups

Content created by Louis Wasserman.

Created on 2025-09-02.
Last modified on 2025-09-02.

{-# OPTIONS --lossy-unification #-}

module group-theory.sums-of-finite-sequences-of-elements-abelian-groups where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers

open import finite-group-theory.permutations-standard-finite-types

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.commutative-monoids
open import group-theory.sums-of-finite-sequences-of-elements-commutative-monoids
open import group-theory.sums-of-finite-sequences-of-elements-commutative-semigroups

open import linear-algebra.finite-sequences-in-abelian-groups
open import linear-algebra.finite-sequences-in-commutative-monoids

open import univalent-combinatorics.coproduct-types
open import univalent-combinatorics.standard-finite-types

Idea

The sum operation extends the binary operation on a abelian group G to any finite sequence of elements of G.

Definition

sum-fin-sequence-type-Ab :
  {l : Level} (G : Ab l) (n : ) 
  fin-sequence-type-Ab G n  type-Ab G
sum-fin-sequence-type-Ab G =
  sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

Properties

Sums of one and two elements

module _
  {l : Level} (G : Ab l)
  where

  compute-sum-one-element-Ab :
    (f : fin-sequence-type-Ab G 1) 
    sum-fin-sequence-type-Ab G 1 f 
    head-fin-sequence-type-Ab G 0 f
  compute-sum-one-element-Ab =
    compute-sum-one-element-Commutative-Monoid (commutative-monoid-Ab G)

  compute-sum-two-elements-Ab :
    (f : fin-sequence-type-Ab G 2) 
    sum-fin-sequence-type-Ab G 2 f 
    add-Ab G (f (zero-Fin 1)) (f (one-Fin 1))
  compute-sum-two-elements-Ab =
    compute-sum-two-elements-Commutative-Monoid (commutative-monoid-Ab G)

Sums are homotopy invariant

module _
  {l : Level} (G : Ab l)
  where

  htpy-sum-fin-sequence-type-Ab :
    (n : ) {f g : fin-sequence-type-Ab G n} 
    (f ~ g) 
    sum-fin-sequence-type-Ab G n f 
    sum-fin-sequence-type-Ab G n g
  htpy-sum-fin-sequence-type-Ab =
    htpy-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

Sums are equal to the zero-th term plus the rest

module _
  {l : Level} (G : Ab l)
  where

  cons-sum-fin-sequence-type-Ab :
    (n : ) (f : fin-sequence-type-Ab G (succ-ℕ n)) 
    {x : type-Ab G} 
    head-fin-sequence-type-Ab G n f  x 
    sum-fin-sequence-type-Ab G (succ-ℕ n) f 
    add-Ab G
      ( sum-fin-sequence-type-Ab G n (f  inl-Fin n))
      ( x)
  cons-sum-fin-sequence-type-Ab =
    cons-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

  snoc-sum-fin-sequence-type-Ab :
    (n : ) (f : fin-sequence-type-Ab G (succ-ℕ n)) 
    {x : type-Ab G}  f (zero-Fin n)  x 
    sum-fin-sequence-type-Ab G (succ-ℕ n) f 
    add-Ab G
      ( x)
      ( sum-fin-sequence-type-Ab G n (f  inr-Fin n))
  snoc-sum-fin-sequence-type-Ab =
    snoc-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

Extending a sum of elements in a monoid

module _
  {l : Level} (G : Ab l)
  where

  extend-sum-fin-sequence-type-Ab :
    (n : ) (f : fin-sequence-type-Ab G n) 
    sum-fin-sequence-type-Ab G
      ( succ-ℕ n)
      ( cons-fin-sequence-type-Ab
        ( G)
        ( n)
        ( zero-Ab G) f) 
    sum-fin-sequence-type-Ab G n f
  extend-sum-fin-sequence-type-Ab =
    extend-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

Shifting a sum of elements in a monoid

module _
  {l : Level} (G : Ab l)
  where

  shift-sum-fin-sequence-type-Ab :
    (n : ) (f : fin-sequence-type-Ab G n) 
    sum-fin-sequence-type-Ab G
      ( succ-ℕ n)
      ( snoc-fin-sequence-type-Ab G n f
        ( zero-Ab G)) 
    sum-fin-sequence-type-Ab G n f
  shift-sum-fin-sequence-type-Ab =
    shift-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

A sum of zeroes is zero

module _
  {l : Level} (G : Ab l)
  where

  sum-zero-fin-sequence-type-Ab :
    (n : ) 
    sum-fin-sequence-type-Ab
      ( G)
      ( n)
      ( zero-fin-sequence-type-Ab G n) 
    zero-Ab G
  sum-zero-fin-sequence-type-Ab =
    sum-zero-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

Splitting sums of n + m elements into a sum of n elements and a sum of m elements

split-sum-fin-sequence-type-Ab :
  {l : Level} (G : Ab l)
  (n m : ) (f : fin-sequence-type-Ab G (n +ℕ m)) 
  sum-fin-sequence-type-Ab G (n +ℕ m) f 
  add-Ab G
    ( sum-fin-sequence-type-Ab G n (f  inl-coproduct-Fin n m))
    ( sum-fin-sequence-type-Ab G m (f  inr-coproduct-Fin n m))
split-sum-fin-sequence-type-Ab G =
  split-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)

Permutations preserve sums

module _
  {l : Level} (G : Ab l)
  where

  abstract
    preserves-sum-permutation-fin-sequence-type-Ab :
      (n : )  (σ : Permutation n) 
      (f : fin-sequence-type-Ab G n) 
      sum-fin-sequence-type-Ab G n f 
      sum-fin-sequence-type-Ab G n (f  map-equiv σ)
    preserves-sum-permutation-fin-sequence-type-Ab =
      preserves-sum-permutation-fin-sequence-type-Commutative-Monoid
        ( commutative-monoid-Ab G)

See also

  • Sum at Wikidata

Recent changes