Sums of finite sequences of elements in abelian groups
Content created by Louis Wasserman.
Created on 2025-09-02.
Last modified on 2025-09-02.
{-# OPTIONS --lossy-unification #-} module group-theory.sums-of-finite-sequences-of-elements-abelian-groups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import finite-group-theory.permutations-standard-finite-types open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.sums-of-finite-sequences-of-elements-commutative-monoids open import group-theory.sums-of-finite-sequences-of-elements-commutative-semigroups open import linear-algebra.finite-sequences-in-abelian-groups open import linear-algebra.finite-sequences-in-commutative-monoids open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The
sum operation¶
extends the binary operation on a
abelian group G
to any
finite sequence of elements of G
.
Definition
sum-fin-sequence-type-Ab : {l : Level} (G : Ab l) (n : ℕ) → fin-sequence-type-Ab G n → type-Ab G sum-fin-sequence-type-Ab G = sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
Properties
Sums of one and two elements
module _ {l : Level} (G : Ab l) where compute-sum-one-element-Ab : (f : fin-sequence-type-Ab G 1) → sum-fin-sequence-type-Ab G 1 f = head-fin-sequence-type-Ab G 0 f compute-sum-one-element-Ab = compute-sum-one-element-Commutative-Monoid (commutative-monoid-Ab G) compute-sum-two-elements-Ab : (f : fin-sequence-type-Ab G 2) → sum-fin-sequence-type-Ab G 2 f = add-Ab G (f (zero-Fin 1)) (f (one-Fin 1)) compute-sum-two-elements-Ab = compute-sum-two-elements-Commutative-Monoid (commutative-monoid-Ab G)
Sums are homotopy invariant
module _ {l : Level} (G : Ab l) where htpy-sum-fin-sequence-type-Ab : (n : ℕ) {f g : fin-sequence-type-Ab G n} → (f ~ g) → sum-fin-sequence-type-Ab G n f = sum-fin-sequence-type-Ab G n g htpy-sum-fin-sequence-type-Ab = htpy-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
Sums are equal to the zero-th term plus the rest
module _ {l : Level} (G : Ab l) where cons-sum-fin-sequence-type-Ab : (n : ℕ) (f : fin-sequence-type-Ab G (succ-ℕ n)) → {x : type-Ab G} → head-fin-sequence-type-Ab G n f = x → sum-fin-sequence-type-Ab G (succ-ℕ n) f = add-Ab G ( sum-fin-sequence-type-Ab G n (f ∘ inl-Fin n)) ( x) cons-sum-fin-sequence-type-Ab = cons-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G) snoc-sum-fin-sequence-type-Ab : (n : ℕ) (f : fin-sequence-type-Ab G (succ-ℕ n)) → {x : type-Ab G} → f (zero-Fin n) = x → sum-fin-sequence-type-Ab G (succ-ℕ n) f = add-Ab G ( x) ( sum-fin-sequence-type-Ab G n (f ∘ inr-Fin n)) snoc-sum-fin-sequence-type-Ab = snoc-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
Extending a sum of elements in a monoid
module _ {l : Level} (G : Ab l) where extend-sum-fin-sequence-type-Ab : (n : ℕ) (f : fin-sequence-type-Ab G n) → sum-fin-sequence-type-Ab G ( succ-ℕ n) ( cons-fin-sequence-type-Ab ( G) ( n) ( zero-Ab G) f) = sum-fin-sequence-type-Ab G n f extend-sum-fin-sequence-type-Ab = extend-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
Shifting a sum of elements in a monoid
module _ {l : Level} (G : Ab l) where shift-sum-fin-sequence-type-Ab : (n : ℕ) (f : fin-sequence-type-Ab G n) → sum-fin-sequence-type-Ab G ( succ-ℕ n) ( snoc-fin-sequence-type-Ab G n f ( zero-Ab G)) = sum-fin-sequence-type-Ab G n f shift-sum-fin-sequence-type-Ab = shift-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
A sum of zeroes is zero
module _ {l : Level} (G : Ab l) where sum-zero-fin-sequence-type-Ab : (n : ℕ) → sum-fin-sequence-type-Ab ( G) ( n) ( zero-fin-sequence-type-Ab G n) = zero-Ab G sum-zero-fin-sequence-type-Ab = sum-zero-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
Splitting sums of n + m
elements into a sum of n
elements and a sum of m
elements
split-sum-fin-sequence-type-Ab : {l : Level} (G : Ab l) (n m : ℕ) (f : fin-sequence-type-Ab G (n +ℕ m)) → sum-fin-sequence-type-Ab G (n +ℕ m) f = add-Ab G ( sum-fin-sequence-type-Ab G n (f ∘ inl-coproduct-Fin n m)) ( sum-fin-sequence-type-Ab G m (f ∘ inr-coproduct-Fin n m)) split-sum-fin-sequence-type-Ab G = split-sum-fin-sequence-type-Commutative-Monoid (commutative-monoid-Ab G)
Permutations preserve sums
module _ {l : Level} (G : Ab l) where abstract preserves-sum-permutation-fin-sequence-type-Ab : (n : ℕ) → (σ : Permutation n) → (f : fin-sequence-type-Ab G n) → sum-fin-sequence-type-Ab G n f = sum-fin-sequence-type-Ab G n (f ∘ map-equiv σ) preserves-sum-permutation-fin-sequence-type-Ab = preserves-sum-permutation-fin-sequence-type-Commutative-Monoid ( commutative-monoid-Ab G)
See also
External links
- Sum at Wikidata
Recent changes
- 2025-09-02. Louis Wasserman. Finite sums in groups and abelian groups (#1527).