Opposite ring extensions of the rational numbers
Content created by Garrett Figueroa and malarbol.
Created on 2025-08-11.
Last modified on 2025-08-11.
{-# OPTIONS --lossy-unification #-} module ring-theory.opposite-ring-extensions-rational-numbers where
Imports
open import elementary-number-theory.positive-integers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import ring-theory.homomorphisms-rings open import ring-theory.opposite-rings open import ring-theory.ring-extensions-rational-numbers open import ring-theory.rings
Idea
A ring is an extension of ℚ if and only if its opposite ring is.
Definitions
A ring is an extension of ℚ
if and only if its opposite ring is
module _ {l : Level} (R : Ring l) where is-rational-extension-op-is-rational-extension-Ring : is-rational-extension-Ring R → is-rational-extension-Ring (op-Ring R) is-rational-extension-op-is-rational-extension-Ring H k k>0 = ( inv-positive-integer-Rational-Extension-Ring (R , H) (k , k>0)) , ( left-inverse-law-positive-integer-Rational-Extension-Ring ( R , H) ( k , k>0)) , ( right-inverse-law-positive-integer-Rational-Extension-Ring ( R , H) ( k , k>0)) is-rational-extension-is-rational-extension-op-Ring : is-rational-extension-Ring (op-Ring R) → is-rational-extension-Ring R is-rational-extension-is-rational-extension-op-Ring H k k>0 = ( inv-positive-integer-Rational-Extension-Ring (op-Ring R , H) (k , k>0)) , ( left-inverse-law-positive-integer-Rational-Extension-Ring ( op-Ring R , H) ( k , k>0)) , ( right-inverse-law-positive-integer-Rational-Extension-Ring ( op-Ring R , H) ( k , k>0)) module _ {l : Level} (R : Rational-Extension-Ring l) where op-Rational-Extension-Ring : Rational-Extension-Ring l pr1 op-Rational-Extension-Ring = op-Ring (ring-Rational-Extension-Ring R) pr2 op-Rational-Extension-Ring = is-rational-extension-op-is-rational-extension-Ring ( ring-Rational-Extension-Ring R) ( is-rational-extension-ring-Rational-Extension-Ring R)
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452).