Sections of dependent type theories
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-04-14.
Last modified on 2023-09-11.
{-# OPTIONS --guardedness #-} module type-theories.sections-dependent-type-theories where
Imports
open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import type-theories.dependent-type-theories open import type-theories.fibered-dependent-type-theories
open dependent open fibered module sections-dtt where precomp-fibered-system : {l1 l2 l3 l4 l5 l6 : Level} {A : system l1 l2} {B : system l3 l4} (C : fibered-system l5 l6 B) (f : hom-system A B) → fibered-system l5 l6 A fibered-system.type (precomp-fibered-system C f) X = fibered-system.type C (section-system.type f X) fibered-system.element (precomp-fibered-system C f) Y x = fibered-system.element C Y (section-system.element f x) fibered-system.slice (precomp-fibered-system C f) {X} Y = precomp-fibered-system ( fibered-system.slice C Y) ( section-system.slice f X) precomp-section-system : {l1 l2 l3 l4 l5 l6 : Level} {A : system l1 l2} {B : system l3 l4} {C : fibered-system l5 l6 B} (g : section-system C) (f : hom-system A B) → section-system (precomp-fibered-system C f) section-system.type (precomp-section-system g f) X = section-system.type g (section-system.type f X) section-system.element (precomp-section-system g f) x = section-system.element g (section-system.element f x) section-system.slice (precomp-section-system g f) X = precomp-section-system ( section-system.slice g (section-system.type f X)) ( section-system.slice f X) transpose-bifibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : fibered-system l5 l6 A} (D : bifibered-system l7 l8 B C) → bifibered-system l7 l8 C B bifibered-system.type (transpose-bifibered-system D) Z Y = bifibered-system.type D Y Z bifibered-system.element (transpose-bifibered-system D) W z y = bifibered-system.element D W y z bifibered-system.slice (transpose-bifibered-system D) W = transpose-bifibered-system (bifibered-system.slice D W) postcomp-section-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : system l5 l6} {D : fibered-system l7 l8 C} {f : hom-system A C} (g : hom-fibered-system f B D) (h : section-system B) → section-system (precomp-fibered-system D f) section-system.type (postcomp-section-system g h) X = section-fibered-system.type g (section-system.type h X) section-system.element (postcomp-section-system g h) x = section-fibered-system.element g (section-system.element h x) section-system.slice (postcomp-section-system g h) X = postcomp-section-system ( section-fibered-system.slice g (section-system.type h X)) ( section-system.slice h X) record preserves-weakening-section-system {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} (WB : fibered-weakening B WA) (f : section-system B) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : (X : system.type A) → htpy-section-system ( precomp-section-system ( section-system.slice f X) ( weakening.type WA X)) ( postcomp-section-system ( fibered-weakening.type WB (section-system.type f X)) ( f)) slice : (X : system.type A) → preserves-weakening-section-system ( fibered-weakening.slice WB (section-system.type f X)) ( section-system.slice f X) record preserves-substitution-section-system {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {SA : substitution A} (SB : fibered-substitution B SA) (f : section-system B) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (x : system.element A X) → htpy-section-system ( precomp-section-system f (substitution.type SA x)) ( postcomp-section-system ( fibered-substitution.type SB (section-system.element f x)) ( section-system.slice f X)) slice : (X : system.type A) → preserves-substitution-section-system ( fibered-substitution.slice SB (section-system.type f X)) ( section-system.slice f X) record preserves-generic-element-section-system {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {δA : generic-element WA} {WB : fibered-weakening B WA} (δB : fibered-generic-element WB δA) {f : section-system B} (Wf : preserves-weakening-section-system WB f) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : (X : system.type A) → Id ( tr ( λ t → fibered-system.element ( fibered-system.slice B (section-system.type f X)) ( t) ( generic-element.type δA X)) ( section-system.type ( preserves-weakening-section-system.type Wf X) ( X)) ( section-system.element ( section-system.slice f X) ( generic-element.type δA X))) ( fibered-generic-element.type δB (section-system.type f X)) slice : (X : system.type A) → preserves-generic-element-section-system ( fibered-generic-element.slice δB (section-system.type f X)) ( preserves-weakening-section-system.slice Wf X) record section-type-theory {l1 l2 l3 l4 : Level} {A : type-theory l1 l2} (B : fibered-type-theory l3 l4 A) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where field sys : section-system (fibered-type-theory.sys B) W : preserves-weakening-section-system ( fibered-type-theory.W B) ( sys) S : preserves-substitution-section-system ( fibered-type-theory.S B) ( sys) δ : preserves-generic-element-section-system ( fibered-type-theory.δ B) ( W)
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-07. Fredrik Bakke. Move public imports before “Imports” block (#642).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).