Finite monoids

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and favonia.

Created on 2022-03-24.
Last modified on 2024-08-22.

module finite-group-theory.finite-monoids where
Imports
open import elementary-number-theory.natural-numbers

open import finite-group-theory.finite-semigroups

open import foundation.decidable-propositions
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.mere-equivalences
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.set-truncations
open import foundation.sets
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.unital-binary-operations
open import foundation.universe-levels

open import group-theory.monoids
open import group-theory.semigroups

open import univalent-combinatorics.cartesian-product-types
open import univalent-combinatorics.counting
open import univalent-combinatorics.decidable-dependent-function-types
open import univalent-combinatorics.decidable-dependent-pair-types
open import univalent-combinatorics.dependent-function-types
open import univalent-combinatorics.dependent-pair-types
open import univalent-combinatorics.equality-finite-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.finitely-many-connected-components
open import univalent-combinatorics.pi-finite-types
open import univalent-combinatorics.standard-finite-types

Idea

A finite monoid is a monoid of which the underlying type is finite.

Definition

The type of finite monoids

is-unital-Semigroup-𝔽 :
  {l : Level}  Semigroup-𝔽 l  UU l
is-unital-Semigroup-𝔽 G = is-unital (mul-Semigroup-𝔽 G)

Monoid-𝔽 :
  (l : Level)  UU (lsuc l)
Monoid-𝔽 l = Σ (Semigroup-𝔽 l) is-unital-Semigroup-𝔽

module _
  {l : Level} (M : Monoid-𝔽 l)
  where

  finite-semigroup-Monoid-𝔽 : Semigroup-𝔽 l
  finite-semigroup-Monoid-𝔽 = pr1 M

  semigroup-Monoid-𝔽 : Semigroup l
  semigroup-Monoid-𝔽 = semigroup-Semigroup-𝔽 finite-semigroup-Monoid-𝔽

  finite-type-Monoid-𝔽 : 𝔽 l
  finite-type-Monoid-𝔽 = finite-type-Semigroup-𝔽 finite-semigroup-Monoid-𝔽

  type-Monoid-𝔽 : UU l
  type-Monoid-𝔽 = type-Semigroup-𝔽 finite-semigroup-Monoid-𝔽

  is-finite-type-Monoid-𝔽 : is-finite type-Monoid-𝔽
  is-finite-type-Monoid-𝔽 = is-finite-type-Semigroup-𝔽 finite-semigroup-Monoid-𝔽

  set-Monoid-𝔽 : Set l
  set-Monoid-𝔽 = set-Semigroup semigroup-Monoid-𝔽

  is-set-type-Monoid-𝔽 : is-set type-Monoid-𝔽
  is-set-type-Monoid-𝔽 = is-set-type-Semigroup semigroup-Monoid-𝔽

  mul-Monoid-𝔽 : type-Monoid-𝔽  type-Monoid-𝔽  type-Monoid-𝔽
  mul-Monoid-𝔽 = mul-Semigroup semigroup-Monoid-𝔽

  mul-Monoid-𝔽' : type-Monoid-𝔽  type-Monoid-𝔽  type-Monoid-𝔽
  mul-Monoid-𝔽' y x = mul-Monoid-𝔽 x y

  ap-mul-Monoid-𝔽 :
    {x x' y y' : type-Monoid-𝔽} 
    x  x'  y  y'  mul-Monoid-𝔽 x y  mul-Monoid-𝔽 x' y'
  ap-mul-Monoid-𝔽 = ap-mul-Semigroup semigroup-Monoid-𝔽

  associative-mul-Monoid-𝔽 :
    (x y z : type-Monoid-𝔽) 
    mul-Monoid-𝔽 (mul-Monoid-𝔽 x y) z  mul-Monoid-𝔽 x (mul-Monoid-𝔽 y z)
  associative-mul-Monoid-𝔽 = associative-mul-Semigroup semigroup-Monoid-𝔽

  has-unit-Monoid-𝔽 : is-unital mul-Monoid-𝔽
  has-unit-Monoid-𝔽 = pr2 M

  monoid-Monoid-𝔽 : Monoid l
  pr1 monoid-Monoid-𝔽 = semigroup-Monoid-𝔽
  pr2 monoid-Monoid-𝔽 = has-unit-Monoid-𝔽

  unit-Monoid-𝔽 : type-Monoid-𝔽
  unit-Monoid-𝔽 = unit-Monoid monoid-Monoid-𝔽

  left-unit-law-mul-Monoid-𝔽 :
    (x : type-Monoid-𝔽)  mul-Monoid-𝔽 unit-Monoid-𝔽 x  x
  left-unit-law-mul-Monoid-𝔽 = left-unit-law-mul-Monoid monoid-Monoid-𝔽

  right-unit-law-mul-Monoid-𝔽 :
    (x : type-Monoid-𝔽)  mul-Monoid-𝔽 x unit-Monoid-𝔽  x
  right-unit-law-mul-Monoid-𝔽 = right-unit-law-mul-Monoid monoid-Monoid-𝔽

Monoids of order n

Monoid-of-Order : (l : Level) (n : )  UU (lsuc l)
Monoid-of-Order l n = Σ (Monoid l)  M  mere-equiv (Fin n) (type-Monoid M))

Properties

For any semigroup of order n, the type of multiplicative units is finite

is-finite-is-unital-Semigroup :
  {l : Level} (n : ) (X : Semigroup-of-Order l n) 
  is-finite (is-unital-Semigroup (pr1 X))
is-finite-is-unital-Semigroup {l} n X =
  apply-universal-property-trunc-Prop
    ( pr2 X)
    ( is-finite-Prop _)
    ( λ e 
      is-finite-is-decidable-Prop
        ( is-unital-prop-Semigroup (pr1 X))
        ( is-decidable-Σ-count
          ( pair n e)
          ( λ u 
            is-decidable-product
              ( is-decidable-Π-count
                ( pair n e)
                ( λ x 
                  has-decidable-equality-count
                    ( pair n e)
                    ( mul-Semigroup (pr1 X) u x)
                    ( x)))
              ( is-decidable-Π-count
                ( pair n e)
                ( λ x 
                  has-decidable-equality-count
                    ( pair n e)
                    ( mul-Semigroup (pr1 X) x u)
                    ( x))))))

The type of monoids of order n is π-finite

is-π-finite-Monoid-of-Order :
  {l : Level} (k n : )  is-π-finite k (Monoid-of-Order l n)
is-π-finite-Monoid-of-Order {l} k n =
  is-π-finite-equiv k e
    ( is-π-finite-Σ k
      ( is-π-finite-Semigroup-of-Order (succ-ℕ k) n)
      ( λ X 
        is-π-finite-is-finite k
          ( is-finite-is-unital-Semigroup n X)))
  where
  e :
    Monoid-of-Order l n 
    Σ (Semigroup-of-Order l n)  X  is-unital-Semigroup (pr1 X))
  e = equiv-right-swap-Σ

The function that returns for any n the number of monoids of order n up to isomorphism

number-of-monoids-of-order :   
number-of-monoids-of-order n =
  number-of-connected-components
    ( is-π-finite-Monoid-of-Order {lzero} zero-ℕ n)

mere-equiv-number-of-monoids-of-order :
  (n : ) 
  mere-equiv
    ( Fin (number-of-monoids-of-order n))
    ( type-trunc-Set (Monoid-of-Order lzero n))
mere-equiv-number-of-monoids-of-order n =
  mere-equiv-number-of-connected-components
    ( is-π-finite-Monoid-of-Order {lzero} zero-ℕ n)

For any finite semigroup G, being unital is a property

abstract
  is-prop-is-unital-Semigroup-𝔽 :
    {l : Level} (G : Semigroup-𝔽 l)  is-prop (is-unital-Semigroup-𝔽 G)
  is-prop-is-unital-Semigroup-𝔽 G =
    is-prop-is-unital-Semigroup (semigroup-Semigroup-𝔽 G)

is-unital-Semigroup-𝔽-Prop : {l : Level} (G : Semigroup-𝔽 l)  Prop l
pr1 (is-unital-Semigroup-𝔽-Prop G) = is-unital-Semigroup-𝔽 G
pr2 (is-unital-Semigroup-𝔽-Prop G) = is-prop-is-unital-Semigroup-𝔽 G

For any finite semigroup G, being unital is finite

is-finite-is-unital-Semigroup-𝔽 :
  {l : Level} (G : Semigroup-𝔽 l)  is-finite (is-unital-Semigroup-𝔽 G)
is-finite-is-unital-Semigroup-𝔽 G =
  is-finite-Σ
    ( is-finite-type-Semigroup-𝔽 G)
    ( λ e 
      is-finite-product
        ( is-finite-Π
          ( is-finite-type-Semigroup-𝔽 G)
          ( λ x  is-finite-eq-𝔽 (finite-type-Semigroup-𝔽 G)))
        ( is-finite-Π
          ( is-finite-type-Semigroup-𝔽 G)
          ( λ x  is-finite-eq-𝔽 (finite-type-Semigroup-𝔽 G))))

There is a finite number of ways to equip a finite type with the structure of a monoid

structure-monoid-𝔽 :
  {l1 : Level}  𝔽 l1  UU l1
structure-monoid-𝔽 X =
  Σ (structure-semigroup-𝔽 X)  p  is-unital-Semigroup-𝔽 (X , p))

finite-monoid-structure-monoid-𝔽 :
  {l : Level}  (X : 𝔽 l)  structure-monoid-𝔽 X  Monoid-𝔽 l
pr1 (finite-monoid-structure-monoid-𝔽 X (a , u)) = X , a
pr2 (finite-monoid-structure-monoid-𝔽 X (a , u)) = u

is-finite-structure-monoid-𝔽 :
  {l : Level}  (X : 𝔽 l)  is-finite (structure-monoid-𝔽 X)
is-finite-structure-monoid-𝔽 X =
  is-finite-Σ
    ( is-finite-structure-semigroup-𝔽 X)
    ( λ m  is-finite-is-unital-Semigroup-𝔽 (X , m))

Recent changes