Commuting pentagons of identifications
Content created by Fredrik Bakke and Vojtěch Štěpančík.
Created on 2023-11-01.
Last modified on 2024-04-16.
module foundation.commuting-pentagons-of-identifications where
Imports
open import foundation.action-on-identifications-functions open import foundation.universe-levels open import foundation-core.identity-types
Idea
A pentagon of identifications
top
x --- y
top-left / \ top-right
/ \
z w
\ /
bottom-left \ / bottom-right
v
is said to commute if there is an identification
top-left ∙ bottom-left = (top ∙ top-right) ∙ bottom-right.
Such an identification is called a coherence of the pentagon.
Definitions
Commuting pentagons of identifications
module _ {l : Level} {A : UU l} {x y z w v : A} where coherence-pentagon-identifications : (top : x = y) (top-left : x = z) (top-right : y = w) (bottom-left : z = v) (bottom-right : w = v) → UU l coherence-pentagon-identifications top top-left top-right bottom-left bottom-right = top-left ∙ bottom-left = (top ∙ top-right) ∙ bottom-right
Reflections of commuting pentagons of identifications
A pentagon may be reflected along an axis connecting an edge with its opposing vertex. For example, we may reflect a pentagon
top
x --- y
top-left / \ top-right
/ \
z w
\ /
bottom-left \ / bottom-right
v
along the axis connecting top
and v
to get
top⁻¹
y --- x
top-right / \ top-left
/ \
w z
\ /
bottom-right \ / bottom-left
v .
The reflections are named after the edge which the axis passes through, so the
above example is reflect-top-coherence-pentagon-identifications
.
module _ {l : Level} {A : UU l} {x y z w v : A} where reflect-top-coherence-pentagon-identifications : (top : x = y) (top-left : x = z) (top-right : y = w) (bottom-left : z = v) (bottom-right : w = v) → coherence-pentagon-identifications ( top) ( top-left) ( top-right) ( bottom-left) ( bottom-right) → coherence-pentagon-identifications ( inv top) ( top-right) ( top-left) ( bottom-right) ( bottom-left) reflect-top-coherence-pentagon-identifications refl top-left top-right bottom-left bottom-right H = inv H reflect-top-left-coherence-pentagon-identifications : (top : x = y) (top-left : x = z) (top-right : y = w) (bottom-left : z = v) (bottom-right : w = v) → coherence-pentagon-identifications ( top) ( top-left) ( top-right) ( bottom-left) ( bottom-right) → coherence-pentagon-identifications ( bottom-left) ( inv top-left) ( inv bottom-right) ( top) ( inv top-right) reflect-top-left-coherence-pentagon-identifications refl refl refl bottom-left refl H = inv (right-unit ∙ right-unit ∙ H) reflect-top-right-coherence-pentagon-identifications : (top : x = y) (top-left : x = z) (top-right : y = w) (bottom-left : z = v) (bottom-right : w = v) → coherence-pentagon-identifications ( top) ( top-left) ( top-right) ( bottom-left) ( bottom-right) → coherence-pentagon-identifications ( inv bottom-right) ( inv bottom-left) ( inv top-right) ( inv top-left) ( inv top) reflect-top-right-coherence-pentagon-identifications refl top-left refl refl refl H = ap inv (inv right-unit ∙ H) reflect-bottom-left-coherence-pentagon-identifications : (top : x = y) (top-left : x = z) (top-right : y = w) (bottom-left : z = v) (bottom-right : w = v) → coherence-pentagon-identifications ( top) ( top-left) ( top-right) ( bottom-left) ( bottom-right) → coherence-pentagon-identifications ( inv top-right) ( bottom-right) ( inv top) ( inv bottom-left) ( top-left) reflect-bottom-left-coherence-pentagon-identifications refl refl refl refl bottom-right H = right-unit ∙ inv H reflect-bottom-right-coherence-pentagon-identifications : (top : x = y) (top-left : x = z) (top-right : y = w) (bottom-left : z = v) (bottom-right : w = v) → coherence-pentagon-identifications ( top) ( top-left) ( top-right) ( bottom-left) ( bottom-right) → coherence-pentagon-identifications ( bottom-left) ( inv top-left) ( inv bottom-right) ( top) ( inv top-right) reflect-bottom-right-coherence-pentagon-identifications refl refl refl bottom-left refl H = inv (right-unit ∙ right-unit ∙ H)
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).