Universal property of metric quotients of pseudometric spaces and short maps
Content created by malarbol.
Created on 2026-01-09.
Last modified on 2026-01-09.
{-# OPTIONS --lossy-unification #-} module metric-spaces.universal-property-short-maps-metric-quotients-of-pseudometric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.set-quotients open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universal-property-set-quotients open import foundation.universe-levels open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-maps-metric-spaces open import metric-spaces.short-maps-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
Precomposition with the natural
isometry from a
pseudometric space P into its
metric quotient
q : P → [P]
maps short maps [P] → M to a
metric space to
short maps from P to the
underlying pseudometric space of M.
This action is an equivalence, so short maps from a pseudometric space to a metric space are equivalent¶ to short maps from its metric quotient.
Equivalently, the metric quotient satisfies the
universal property¶
of metric quotients and short maps: for any short map f : P → M from a
pseudometric space in a metric space, there
uniquely exists an extension of f
along q, i.e., a short map g : [P] → M such that
g ∘ q ~ f.
Definitions
Precomposition of short maps by the metric quotient isometry
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') where precomp-short-map-metric-quotient-Pseudometric-Space : short-map-Metric-Space (metric-quotient-Pseudometric-Space P) M → short-map-Pseudometric-Space P (pseudometric-Metric-Space M) precomp-short-map-metric-quotient-Pseudometric-Space f = comp-short-map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( pseudometric-Metric-Space M) ( f) ( short-map-metric-quotient-Pseudometric-Space P)
The induced map from the quotient metric space by a short map in a metric space
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where map-exten-short-map-metric-quotient-Pseudometric-space : map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) map-exten-short-map-metric-quotient-Pseudometric-space = inv-precomp-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( set-Metric-Space M) ( reflecting-map-short-map-metric-space-Pseudometric-Space P M f) is-extension-exten-short-map-metric-quotient-Pseudometric-Space : map-exten-short-map-metric-quotient-Pseudometric-space ∘ map-metric-quotient-Pseudometric-Space P ~ map-short-map-Pseudometric-Space P (pseudometric-Metric-Space M) f is-extension-exten-short-map-metric-quotient-Pseudometric-Space = is-section-inv-precomp-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( set-Metric-Space M) ( reflecting-map-short-map-metric-space-Pseudometric-Space P M f) compute-map-exten-short-map-metric-quotient-Pseudometric-Space : (X : type-metric-quotient-Pseudometric-Space P) → {x : type-Pseudometric-Space P} → is-in-class-metric-quotient-Pseudometric-Space P X x → map-exten-short-map-metric-quotient-Pseudometric-space X = map-short-map-Pseudometric-Space P (pseudometric-Metric-Space M) f x compute-map-exten-short-map-metric-quotient-Pseudometric-Space X {x} x∈X = tr ( λ Y → map-exten-short-map-metric-quotient-Pseudometric-space Y = map-short-map-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f) ( x)) ( eq-set-quotient-equivalence-class-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( X) ( x∈X)) ( is-extension-exten-short-map-metric-quotient-Pseudometric-Space x)
Extensions of short maps along the natural inclusion into the metric quotient
The property of being the extension of a short map
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) (g : short-map-Metric-Space (metric-quotient-Pseudometric-Space P) M) where is-extension-prop-short-map-metric-quotient-Pseudometric-Space : Prop (l1 ⊔ l1') is-extension-prop-short-map-metric-quotient-Pseudometric-Space = Π-Prop ( type-Pseudometric-Space P) ( λ x → eq-prop-Metric-Space ( M) ( map-short-map-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( precomp-short-map-metric-quotient-Pseudometric-Space P M g) ( x)) ( map-short-map-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f) ( x))) is-extension-short-map-metric-quotient-Pseudometric-Space : UU (l1 ⊔ l1') is-extension-short-map-metric-quotient-Pseudometric-Space = type-Prop is-extension-prop-short-map-metric-quotient-Pseudometric-Space is-prop-is-extension-short-map-metric-quotient-Pseudometric-Space : is-prop is-extension-short-map-metric-quotient-Pseudometric-Space is-prop-is-extension-short-map-metric-quotient-Pseudometric-Space = is-prop-type-Prop is-extension-prop-short-map-metric-quotient-Pseudometric-Space
The type of extensions of short maps
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where extension-short-map-metric-quotient-Pseudometric-Space : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') extension-short-map-metric-quotient-Pseudometric-Space = Σ ( short-map-Metric-Space (metric-quotient-Pseudometric-Space P) M) ( is-extension-short-map-metric-quotient-Pseudometric-Space P M f) module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) (g : extension-short-map-metric-quotient-Pseudometric-Space P M f) where short-map-extension-short-map-metric-quotient-Pseudometric-Space : short-map-Metric-Space (metric-quotient-Pseudometric-Space P) M short-map-extension-short-map-metric-quotient-Pseudometric-Space = pr1 g map-extension-short-map-metric-quotient-Pseudometric-Space : map-Metric-Space (metric-quotient-Pseudometric-Space P) M map-extension-short-map-metric-quotient-Pseudometric-Space = map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( short-map-extension-short-map-metric-quotient-Pseudometric-Space) is-extension-short-map-extension-short-map-metric-quotient-Pseudometric-Space : map-extension-short-map-metric-quotient-Pseudometric-Space ∘ map-metric-quotient-Pseudometric-Space P ~ map-short-map-Pseudometric-Space P (pseudometric-Metric-Space M) f is-extension-short-map-extension-short-map-metric-quotient-Pseudometric-Space = pr2 g
Properties
Extensions are fibers of the precomposition by the natural inclusion of metric quotients
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where compute-extension-fiber-precomp-short-map-metric-quotient-Pseudometric-Space : fiber (precomp-short-map-metric-quotient-Pseudometric-Space P M) f ≃ extension-short-map-metric-quotient-Pseudometric-Space P M f compute-extension-fiber-precomp-short-map-metric-quotient-Pseudometric-Space = equiv-tot ( λ g → equiv-eq-htpy-map-short-map-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( precomp-short-map-metric-quotient-Pseudometric-Space P M g) ( f))
The unique extension from the quotient metric space is short
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where abstract is-short-map-exten-short-map-metric-quotient-Pseudometric-Space : is-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( map-exten-short-map-metric-quotient-Pseudometric-space P M f) is-short-map-exten-short-map-metric-quotient-Pseudometric-Space d X Y N⟨X,Y⟩ = let open do-syntax-trunc-Prop ( neighborhood-prop-Metric-Space ( M) ( d) ( map-exten-short-map-metric-quotient-Pseudometric-space P M f X) ( map-exten-short-map-metric-quotient-Pseudometric-space P M f Y)) in do ( x , x∈X) ← is-inhabited-subtype-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( X) ( y , y∈Y) ← is-inhabited-subtype-set-quotient ( equivalence-relation-sim-Pseudometric-Space P) ( Y) binary-tr ( neighborhood-Metric-Space M d) ( inv ( compute-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( X) ( x∈X))) ( inv ( compute-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( Y) ( y∈Y))) ( is-short-map-short-map-Pseudometric-Space ( P) ( pseudometric-Metric-Space M) ( f) ( d) ( x) ( y) ( N⟨X,Y⟩ (x , x∈X) (y , y∈Y)))
The extension induced by a short map
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where short-map-exten-short-map-metric-quotient-Pseudometric-Space : short-map-Metric-Space (metric-quotient-Pseudometric-Space P) M short-map-exten-short-map-metric-quotient-Pseudometric-Space = ( map-exten-short-map-metric-quotient-Pseudometric-space P M f , is-short-map-exten-short-map-metric-quotient-Pseudometric-Space P M f) exten-short-map-metric-quotient-Pseudometric-Space : extension-short-map-metric-quotient-Pseudometric-Space P M f exten-short-map-metric-quotient-Pseudometric-Space = ( short-map-exten-short-map-metric-quotient-Pseudometric-Space , is-extension-exten-short-map-metric-quotient-Pseudometric-Space P M f)
All extensions are homotopic to the induced extension
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where abstract all-htpy-map-extension-short-map-metric-quotient-Pseudometric-Space : (g : extension-short-map-metric-quotient-Pseudometric-Space P M f) → htpy-map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( short-map-exten-short-map-metric-quotient-Pseudometric-Space P M f) ( short-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g)) all-htpy-map-extension-short-map-metric-quotient-Pseudometric-Space g X = let open do-syntax-trunc-Prop ( eq-prop-Metric-Space M ( map-exten-short-map-metric-quotient-Pseudometric-space P M f X) ( map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g) ( X))) in do ( x , x∈X) ← is-inhabited-class-metric-quotient-Pseudometric-Space P X let lemma-lhs = compute-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( X) ( x∈X) lemma-mhs = is-extension-short-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g) ( x) lemma-rhs = ap ( map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g)) ( eq-map-is-in-class-metric-quotient-Pseudometric-Space P X x∈X) lemma-lhs ∙ (inv lemma-mhs) ∙ lemma-rhs
All extensions are equal to the induced extension
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where abstract contraction-extension-short-map-metric-quotient-Pseudometric-Space : (g : extension-short-map-metric-quotient-Pseudometric-Space P M f) → exten-short-map-metric-quotient-Pseudometric-Space P M f = g contraction-extension-short-map-metric-quotient-Pseudometric-Space g = eq-type-subtype ( is-extension-prop-short-map-metric-quotient-Pseudometric-Space P M f) ( eq-htpy-map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( M) ( short-map-exten-short-map-metric-quotient-Pseudometric-Space P M f) ( short-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g)) ( all-htpy-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f) ( g)))
The type of extensions of a short map is contractible
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) where is-contr-extension-short-map-metric-quotient-Pseudometric-Space : is-contr ( extension-short-map-metric-quotient-Pseudometric-Space P M f) is-contr-extension-short-map-metric-quotient-Pseudometric-Space = ( exten-short-map-metric-quotient-Pseudometric-Space P M f , contraction-extension-short-map-metric-quotient-Pseudometric-Space P M f)
Precomposing by the natual isometry of metric quotients is an equivalence
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') where abstract is-contr-map-precomp-short-map-metric-quotient-Pseudometric-Space : (f : short-map-Pseudometric-Space P (pseudometric-Metric-Space M)) → is-contr (fiber (precomp-short-map-metric-quotient-Pseudometric-Space P M) f) is-contr-map-precomp-short-map-metric-quotient-Pseudometric-Space f = is-contr-equiv ( extension-short-map-metric-quotient-Pseudometric-Space P M f) ( compute-extension-fiber-precomp-short-map-metric-quotient-Pseudometric-Space ( P) ( M) ( f)) ( is-contr-extension-short-map-metric-quotient-Pseudometric-Space P M f) is-equiv-precomp-short-map-metric-quotient-Pseudometric-Space : is-equiv (precomp-short-map-metric-quotient-Pseudometric-Space P M) is-equiv-precomp-short-map-metric-quotient-Pseudometric-Space = is-equiv-is-contr-map is-contr-map-precomp-short-map-metric-quotient-Pseudometric-Space
The equivalence between short maps from a pseudometric space in a metric space and short maps from the metric quotient
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (M : Metric-Space l1' l2') where equiv-short-map-metric-quotient-Pseudometric-Space : short-map-Metric-Space (metric-quotient-Pseudometric-Space P) M ≃ short-map-Pseudometric-Space P (pseudometric-Metric-Space M) equiv-short-map-metric-quotient-Pseudometric-Space = ( precomp-short-map-metric-quotient-Pseudometric-Space P M , is-equiv-precomp-short-map-metric-quotient-Pseudometric-Space P M)
Recent changes
- 2026-01-09. malarbol. Universal property of metric quotients and short maps (#1786).