Composition of cospans
Content created by Fredrik Bakke.
Created on 2026-02-12.
Last modified on 2026-02-12.
module synthetic-homotopy-theory.composition-cospans where
Imports
open import foundation.cospans open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.function-types open import synthetic-homotopy-theory.pushouts
Idea
Given two cospans F and G such that the source of
G is the target of F
F G
A -----> S <----- B -----> T <----- C,
then we may compose¶ the two cospans by forming the pushout of the middle cospan diagram
C
|
|
∨
B ------> T
| |
| |
∨ ⌜ ∨
A ------> S ------> ∙
giving us a cospan G ∘ F from A to C.
Definitions
Composition of cospans
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (G : cospan l4 B C) (F : cospan l5 A B) where cospanning-type-comp-cospan : UU (l2 ⊔ l4 ⊔ l5) cospanning-type-comp-cospan = pushout (right-map-cospan F) (left-map-cospan G) left-map-comp-cospan : A → cospanning-type-comp-cospan left-map-comp-cospan = inl-pushout (right-map-cospan F) (left-map-cospan G) ∘ left-map-cospan F right-map-comp-cospan : C → cospanning-type-comp-cospan right-map-comp-cospan = inr-pushout (right-map-cospan F) (left-map-cospan G) ∘ right-map-cospan G comp-cospan : cospan (l2 ⊔ l4 ⊔ l5) A C comp-cospan = ( cospanning-type-comp-cospan , left-map-comp-cospan , right-map-comp-cospan)
Recent changes
- 2026-02-12. Fredrik Bakke. Operations on cospans (#1735).