Descent data for families of dependent pair types over the circle

Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.

Created on 2023-08-28.
Last modified on 2023-10-08.

module synthetic-homotopy-theory.descent-circle-dependent-pair-types where
Imports
open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import synthetic-homotopy-theory.dependent-descent-circle
open import synthetic-homotopy-theory.descent-circle
open import synthetic-homotopy-theory.free-loops

Idea

Given a family A : 𝕊¹ → U over the circle and a family B : (t : 𝕊¹) → (A t) → U over A, the descent data for the family of dependent pair types λ t → Σ (A t) (B t) is (Σ X R, map-Σ e k), where (X, e) is descent data for A and (R, k) is dependent descent data for B.

Definitions

Descent data for families of dependent pair types over the circle

module _
  { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S)
  ( A : family-with-descent-data-circle l l2)
  ( B : double-family-with-dependent-descent-data-circle l A l3)
  where

  descent-data-circle-dependent-pair-type : descent-data-circle (l2  l3)
  pr1 descent-data-circle-dependent-pair-type =
    Σ ( type-family-with-descent-data-circle A)
      ( type-double-family-with-dependent-descent-data-circle A B)
  pr2 descent-data-circle-dependent-pair-type =
    equiv-Σ
      ( type-double-family-with-dependent-descent-data-circle A B)
      ( aut-family-with-descent-data-circle A)
      ( dependent-automorphism-double-family-with-dependent-descent-data-circle
        ( A)
        ( B))

  family-descent-data-circle-dependent-pair-type : S  UU (l2  l3)
  family-descent-data-circle-dependent-pair-type x =
    Σ ( family-family-with-descent-data-circle A x)
      ( double-family-double-family-with-dependent-descent-data-circle A B x)

Properties

Characterization of descent data for families of dependent pair types over the circle

module _
  { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S)
  ( A : family-with-descent-data-circle l l2)
  ( B : double-family-with-dependent-descent-data-circle l A l3)
  where

  eq-descent-data-circle-dependent-pair-type :
    equiv-descent-data-circle
      ( descent-data-circle-dependent-pair-type l A B)
      ( descent-data-family-circle l
        ( family-descent-data-circle-dependent-pair-type l A B))
  pr1 eq-descent-data-circle-dependent-pair-type =
    equiv-Σ
      ( double-family-double-family-with-dependent-descent-data-circle A B
        ( base-free-loop l))
      ( equiv-family-with-descent-data-circle A)
      ( equiv-double-family-with-dependent-descent-data-circle A B)
  pr2 eq-descent-data-circle-dependent-pair-type u =
    inv
      ( tr-Σ
          ( double-family-double-family-with-dependent-descent-data-circle A B)
          ( loop-free-loop l)
          ( map-Σ
            ( double-family-double-family-with-dependent-descent-data-circle
              ( A)
              ( B)
              ( base-free-loop l))
            ( map-equiv-family-with-descent-data-circle A)
            ( map-equiv-double-family-with-dependent-descent-data-circle A B)
            ( u)) 
        eq-pair-Σ
          ( inv (coherence-square-family-with-descent-data-circle A (pr1 u)))
          ( inv
            ( coherence-square-double-family-with-dependent-descent-data-circle
              ( A)
              ( B)
              ( pr1 u)
              ( pr2 u) 
              tr-eq-pair-Σ
                ( ind-Σ
                  ( double-family-double-family-with-dependent-descent-data-circle
                    ( A)
                    ( B)))
                ( loop-free-loop l)
                ( inv
                  ( coherence-square-family-with-descent-data-circle A (pr1 u)))
                ( map-equiv-double-family-with-dependent-descent-data-circle A B
                  ( pr1 u)
                  ( pr2 u)))))

  family-with-descent-data-circle-dependent-pair-type :
    family-with-descent-data-circle l (l2  l3)
  pr1 family-with-descent-data-circle-dependent-pair-type =
    family-descent-data-circle-dependent-pair-type l A B
  pr1 (pr2 family-with-descent-data-circle-dependent-pair-type) =
    descent-data-circle-dependent-pair-type l A B
  pr2 (pr2 family-with-descent-data-circle-dependent-pair-type) =
    eq-descent-data-circle-dependent-pair-type

Recent changes