Descent data for families of dependent pair types over the circle
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2023-08-28.
Last modified on 2023-10-08.
module synthetic-homotopy-theory.descent-circle-dependent-pair-types where
Imports
open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import synthetic-homotopy-theory.dependent-descent-circle open import synthetic-homotopy-theory.descent-circle open import synthetic-homotopy-theory.free-loops
Idea
Given a family A : 𝕊¹ → U
over the
circle and a family
B : (t : 𝕊¹) → (A t) → U
over A
, the
descent data for the family of
dependent pair types λ t → Σ (A t) (B t)
is (Σ X R, map-Σ e k)
, where (X, e)
is descent data for A
and (R, k)
is
dependent descent data for B
.
Definitions
Descent data for families of dependent pair types over the circle
module _ { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S) ( A : family-with-descent-data-circle l l2) ( B : double-family-with-dependent-descent-data-circle l A l3) where descent-data-circle-dependent-pair-type : descent-data-circle (l2 ⊔ l3) pr1 descent-data-circle-dependent-pair-type = Σ ( type-family-with-descent-data-circle A) ( type-double-family-with-dependent-descent-data-circle A B) pr2 descent-data-circle-dependent-pair-type = equiv-Σ ( type-double-family-with-dependent-descent-data-circle A B) ( aut-family-with-descent-data-circle A) ( dependent-automorphism-double-family-with-dependent-descent-data-circle ( A) ( B)) family-descent-data-circle-dependent-pair-type : S → UU (l2 ⊔ l3) family-descent-data-circle-dependent-pair-type x = Σ ( family-family-with-descent-data-circle A x) ( double-family-double-family-with-dependent-descent-data-circle A B x)
Properties
Characterization of descent data for families of dependent pair types over the circle
module _ { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S) ( A : family-with-descent-data-circle l l2) ( B : double-family-with-dependent-descent-data-circle l A l3) where eq-descent-data-circle-dependent-pair-type : equiv-descent-data-circle ( descent-data-circle-dependent-pair-type l A B) ( descent-data-family-circle l ( family-descent-data-circle-dependent-pair-type l A B)) pr1 eq-descent-data-circle-dependent-pair-type = equiv-Σ ( double-family-double-family-with-dependent-descent-data-circle A B ( base-free-loop l)) ( equiv-family-with-descent-data-circle A) ( equiv-double-family-with-dependent-descent-data-circle A B) pr2 eq-descent-data-circle-dependent-pair-type u = inv ( tr-Σ ( double-family-double-family-with-dependent-descent-data-circle A B) ( loop-free-loop l) ( map-Σ ( double-family-double-family-with-dependent-descent-data-circle ( A) ( B) ( base-free-loop l)) ( map-equiv-family-with-descent-data-circle A) ( map-equiv-double-family-with-dependent-descent-data-circle A B) ( u)) ∙ eq-pair-Σ ( inv (coherence-square-family-with-descent-data-circle A (pr1 u))) ( inv ( coherence-square-double-family-with-dependent-descent-data-circle ( A) ( B) ( pr1 u) ( pr2 u) ∙ tr-eq-pair-Σ ( ind-Σ ( double-family-double-family-with-dependent-descent-data-circle ( A) ( B))) ( loop-free-loop l) ( inv ( coherence-square-family-with-descent-data-circle A (pr1 u))) ( map-equiv-double-family-with-dependent-descent-data-circle A B ( pr1 u) ( pr2 u))))) family-with-descent-data-circle-dependent-pair-type : family-with-descent-data-circle l (l2 ⊔ l3) pr1 family-with-descent-data-circle-dependent-pair-type = family-descent-data-circle-dependent-pair-type l A B pr1 (pr2 family-with-descent-data-circle-dependent-pair-type) = descent-data-circle-dependent-pair-type l A B pr2 (pr2 family-with-descent-data-circle-dependent-pair-type) = eq-descent-data-circle-dependent-pair-type
Recent changes
- 2023-10-08. Egbert Rijke and Fredrik Bakke. Refactoring types with automorphisms/endomorphisms and descent data for the circle (#812).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-08-28. Vojtěch Štěpančík. Extending infrastructure for working with descent data for the circle (#709).