Function algebras on commutative rings
Content created by Louis Wasserman.
Created on 2026-02-14.
Last modified on 2026-02-14.
module commutative-algebra.function-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings open import commutative-algebra.commutative-rings open import commutative-algebra.dependent-products-algebras-commutative-rings open import foundation.universe-levels
Idea
Given a commutative ring R, an
index type I, and an
algebra A over R, the
function type I → A is an algebra over R.
Definition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (I : UU l2) (A : algebra-Commutative-Ring l3 R) where function-algebra-Commutative-Ring : algebra-Commutative-Ring (l2 ⊔ l3) R function-algebra-Commutative-Ring = Π-algebra-Commutative-Ring R I (λ _ → A)
Recent changes
- 2026-02-14. Louis Wasserman. Dependent products of algebras over commutative rings (#1841).