Left modules over commutative rings
Content created by Louis Wasserman.
Created on 2025-09-09.
Last modified on 2025-09-09.
module linear-algebra.left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.left-modules-rings
Idea
A
left module¶
over a commutative ring R
is a
left module over R
viewed as a
ring.
Definition
left-module-Commutative-Ring : {l1 : Level} (l2 : Level) → Commutative-Ring l1 → UU (l1 ⊔ lsuc l2) left-module-Commutative-Ring l2 R = left-module-Ring l2 (ring-Commutative-Ring R)
Properties
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) where ab-left-module-Commutative-Ring : Ab l2 ab-left-module-Commutative-Ring = ab-left-module-Ring (ring-Commutative-Ring R) M set-left-module-Commutative-Ring : Set l2 set-left-module-Commutative-Ring = set-left-module-Ring (ring-Commutative-Ring R) M type-left-module-Commutative-Ring : UU l2 type-left-module-Commutative-Ring = type-left-module-Ring (ring-Commutative-Ring R) M add-left-module-Commutative-Ring : (x y : type-left-module-Commutative-Ring) → type-left-module-Commutative-Ring add-left-module-Commutative-Ring = add-left-module-Ring (ring-Commutative-Ring R) M mul-left-module-Commutative-Ring : type-Commutative-Ring R → type-left-module-Commutative-Ring → type-left-module-Commutative-Ring mul-left-module-Commutative-Ring = mul-left-module-Ring (ring-Commutative-Ring R) M zero-left-module-Commutative-Ring : type-left-module-Commutative-Ring zero-left-module-Commutative-Ring = zero-left-module-Ring (ring-Commutative-Ring R) M is-zero-prop-left-module-Commutative-Ring : type-left-module-Commutative-Ring → Prop l2 is-zero-prop-left-module-Commutative-Ring = is-zero-prop-left-module-Ring (ring-Commutative-Ring R) M is-zero-left-module-Commutative-Ring : type-left-module-Commutative-Ring → UU l2 is-zero-left-module-Commutative-Ring = is-zero-left-module-Ring (ring-Commutative-Ring R) M neg-left-module-Commutative-Ring : type-left-module-Commutative-Ring → type-left-module-Commutative-Ring neg-left-module-Commutative-Ring = neg-left-module-Ring (ring-Commutative-Ring R) M associative-add-left-module-Commutative-Ring : (x y z : type-left-module-Commutative-Ring) → add-left-module-Commutative-Ring (add-left-module-Commutative-Ring x y) z = add-left-module-Commutative-Ring x (add-left-module-Commutative-Ring y z) associative-add-left-module-Commutative-Ring = associative-add-left-module-Ring (ring-Commutative-Ring R) M commutative-add-left-module-Commutative-Ring : (x y : type-left-module-Commutative-Ring) → add-left-module-Commutative-Ring x y = add-left-module-Commutative-Ring y x commutative-add-left-module-Commutative-Ring = commutative-add-left-module-Ring (ring-Commutative-Ring R) M left-unit-law-add-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → add-left-module-Commutative-Ring zero-left-module-Commutative-Ring x = x left-unit-law-add-left-module-Commutative-Ring = left-unit-law-add-left-module-Ring (ring-Commutative-Ring R) M right-unit-law-add-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → add-left-module-Commutative-Ring x zero-left-module-Commutative-Ring = x right-unit-law-add-left-module-Commutative-Ring = right-unit-law-add-left-module-Ring (ring-Commutative-Ring R) M left-inverse-law-add-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → add-left-module-Commutative-Ring (neg-left-module-Commutative-Ring x) x = zero-left-module-Commutative-Ring left-inverse-law-add-left-module-Commutative-Ring = left-inverse-law-add-left-module-Ring (ring-Commutative-Ring R) M right-inverse-law-add-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → add-left-module-Commutative-Ring x (neg-left-module-Commutative-Ring x) = zero-left-module-Commutative-Ring right-inverse-law-add-left-module-Commutative-Ring = right-inverse-law-add-left-module-Ring (ring-Commutative-Ring R) M left-unit-law-mul-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring (one-Commutative-Ring R) x = x left-unit-law-mul-left-module-Commutative-Ring = left-unit-law-mul-left-module-Ring (ring-Commutative-Ring R) M left-distributive-mul-add-left-module-Commutative-Ring : (r : type-Commutative-Ring R) (x y : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring r (add-left-module-Commutative-Ring x y) = add-left-module-Commutative-Ring ( mul-left-module-Commutative-Ring r x) ( mul-left-module-Commutative-Ring r y) left-distributive-mul-add-left-module-Commutative-Ring = left-distributive-mul-add-left-module-Ring (ring-Commutative-Ring R) M right-distributive-mul-add-left-module-Commutative-Ring : (r s : type-Commutative-Ring R) (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring (add-Commutative-Ring R r s) x = add-left-module-Commutative-Ring ( mul-left-module-Commutative-Ring r x) ( mul-left-module-Commutative-Ring s x) right-distributive-mul-add-left-module-Commutative-Ring = right-distributive-mul-add-left-module-Ring (ring-Commutative-Ring R) M associative-mul-left-module-Commutative-Ring : (r s : type-Commutative-Ring R) (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring (mul-Commutative-Ring R r s) x = mul-left-module-Commutative-Ring r (mul-left-module-Commutative-Ring s x) associative-mul-left-module-Commutative-Ring = associative-mul-left-module-Ring (ring-Commutative-Ring R) M left-zero-law-mul-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring (zero-Commutative-Ring R) x = zero-left-module-Commutative-Ring left-zero-law-mul-left-module-Commutative-Ring = left-zero-law-mul-left-module-Ring (ring-Commutative-Ring R) M right-zero-law-mul-left-module-Commutative-Ring : (r : type-Commutative-Ring R) → mul-left-module-Commutative-Ring r zero-left-module-Commutative-Ring = zero-left-module-Commutative-Ring right-zero-law-mul-left-module-Commutative-Ring = right-zero-law-mul-left-module-Ring (ring-Commutative-Ring R) M left-negative-law-mul-left-module-Commutative-Ring : (r : type-Commutative-Ring R) (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring (neg-Commutative-Ring R r) x = neg-left-module-Commutative-Ring (mul-left-module-Commutative-Ring r x) left-negative-law-mul-left-module-Commutative-Ring = left-negative-law-mul-left-module-Ring (ring-Commutative-Ring R) M right-negative-law-mul-left-module-Commutative-Ring : (r : type-Commutative-Ring R) (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring r (neg-left-module-Commutative-Ring x) = neg-left-module-Commutative-Ring (mul-left-module-Commutative-Ring r x) right-negative-law-mul-left-module-Commutative-Ring = right-negative-law-mul-left-module-Ring (ring-Commutative-Ring R) M mul-neg-one-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring) → mul-left-module-Commutative-Ring ( neg-Commutative-Ring R (one-Commutative-Ring R)) ( x) = neg-left-module-Commutative-Ring x mul-neg-one-left-module-Commutative-Ring = mul-neg-one-left-module-Ring (ring-Commutative-Ring R) M
Properties
Any commutative ring is a left module over itself
module _ {l : Level} (R : Commutative-Ring l) where left-module-commutative-ring-Commutative-Ring : left-module-Commutative-Ring l R left-module-commutative-ring-Commutative-Ring = left-module-ring-Ring (ring-Commutative-Ring R)
Constructing a left module over a commutative ring from axioms
make-left-module-Commutative-Ring : {l1 l2 : Level} → (R : Commutative-Ring l1) (A : Ab l2) → (mul-left : type-Commutative-Ring R → type-Ab A → type-Ab A) → (left-distributive-mul-add : (r : type-Commutative-Ring R) (a b : type-Ab A) → mul-left r (add-Ab A a b) = add-Ab A (mul-left r a) (mul-left r b)) → (right-distributive-mul-add : (r s : type-Commutative-Ring R) (a : type-Ab A) → mul-left (add-Commutative-Ring R r s) a = add-Ab A (mul-left r a) (mul-left s a)) → (left-unit-law-mul : (a : type-Ab A) → mul-left (one-Commutative-Ring R) a = a) → (associative-mul : (r s : type-Commutative-Ring R) (a : type-Ab A) → mul-left (mul-Commutative-Ring R r s) a = mul-left r (mul-left s a)) → left-module-Commutative-Ring l2 R make-left-module-Commutative-Ring R = make-left-module-Ring (ring-Commutative-Ring R)
External links
- <a href=“https://www.wikidata.org/entity/“Q120721996”“>Left module at Wikidata
Recent changes
- 2025-09-09. Louis Wasserman. Left modules over commutative rings (#1539).