Euclidean domains
Content created by Fredrik Bakke, Egbert Rijke and Fernando Chu.
Created on 2023-04-05.
Last modified on 2024-03-11.
module commutative-algebra.euclidean-domains where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.commutative-semirings open import commutative-algebra.integral-domains open import commutative-algebra.trivial-commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-embeddings open import foundation.binary-equivalences open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.identity-types open import foundation.injective-maps open import foundation.interchange-law open import foundation.involutions open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import lists.concatenation-lists open import lists.lists open import ring-theory.rings open import ring-theory.semirings
Idea
A Euclidean domain is an
integral domain R
that has a
Euclidean valuation, i.e., a function v : R → ℕ
such that for every
x y : R
, if y
is nonzero then there are q r : R
with x = q y + r
and
v r < v y
.
Definition
The condition of being a Euclidean valuation
is-euclidean-valuation : { l : Level} (R : Integral-Domain l) → ( type-Integral-Domain R → ℕ) → UU l is-euclidean-valuation R v = ( x y : type-Integral-Domain R) → ( is-nonzero-Integral-Domain R y) → Σ ( type-Integral-Domain R × type-Integral-Domain R) ( λ (q , r) → ( Id x (add-Integral-Domain R (mul-Integral-Domain R q y) r)) × ( is-zero-Integral-Domain R r + ( v r <-ℕ v y)))
The condition of being a Euclidean domain
is-euclidean-domain-Integral-Domain : { l : Level} (R : Integral-Domain l) → UU l is-euclidean-domain-Integral-Domain R = Σ (type-Integral-Domain R → ℕ) (is-euclidean-valuation R)
Euclidean domains
Euclidean-Domain : (l : Level) → UU (lsuc l) Euclidean-Domain l = Σ (Integral-Domain l) is-euclidean-domain-Integral-Domain module _ {l : Level} (R : Euclidean-Domain l) where integral-domain-Euclidean-Domain : Integral-Domain l integral-domain-Euclidean-Domain = pr1 R is-euclidean-domain-Euclidean-Domain : is-euclidean-domain-Integral-Domain integral-domain-Euclidean-Domain is-euclidean-domain-Euclidean-Domain = pr2 R commutative-ring-Euclidean-Domain : Commutative-Ring l commutative-ring-Euclidean-Domain = commutative-ring-Integral-Domain integral-domain-Euclidean-Domain has-cancellation-property-Euclidean-Domain : cancellation-property-Commutative-Ring commutative-ring-Euclidean-Domain has-cancellation-property-Euclidean-Domain = has-cancellation-property-Integral-Domain integral-domain-Euclidean-Domain is-nontrivial-Euclidean-Domain : is-nontrivial-Commutative-Ring commutative-ring-Euclidean-Domain is-nontrivial-Euclidean-Domain = is-nontrivial-Integral-Domain integral-domain-Euclidean-Domain ab-Euclidean-Domain : Ab l ab-Euclidean-Domain = ab-Commutative-Ring commutative-ring-Euclidean-Domain ring-Euclidean-Domain : Ring l ring-Euclidean-Domain = ring-Integral-Domain integral-domain-Euclidean-Domain set-Euclidean-Domain : Set l set-Euclidean-Domain = set-Ring ring-Euclidean-Domain type-Euclidean-Domain : UU l type-Euclidean-Domain = type-Ring ring-Euclidean-Domain is-set-type-Euclidean-Domain : is-set type-Euclidean-Domain is-set-type-Euclidean-Domain = is-set-type-Ring ring-Euclidean-Domain
Addition in a Euclidean domain
has-associative-add-Euclidean-Domain : has-associative-mul-Set set-Euclidean-Domain has-associative-add-Euclidean-Domain = has-associative-add-Integral-Domain integral-domain-Euclidean-Domain add-Euclidean-Domain : type-Euclidean-Domain → type-Euclidean-Domain → type-Euclidean-Domain add-Euclidean-Domain = add-Integral-Domain integral-domain-Euclidean-Domain add-Euclidean-Domain' : type-Euclidean-Domain → type-Euclidean-Domain → type-Euclidean-Domain add-Euclidean-Domain' = add-Integral-Domain' integral-domain-Euclidean-Domain ap-add-Euclidean-Domain : {x x' y y' : type-Euclidean-Domain} → (x = x') → (y = y') → add-Euclidean-Domain x y = add-Euclidean-Domain x' y' ap-add-Euclidean-Domain = ap-add-Integral-Domain integral-domain-Euclidean-Domain associative-add-Euclidean-Domain : (x y z : type-Euclidean-Domain) → ( add-Euclidean-Domain (add-Euclidean-Domain x y) z) = ( add-Euclidean-Domain x (add-Euclidean-Domain y z)) associative-add-Euclidean-Domain = associative-add-Integral-Domain integral-domain-Euclidean-Domain additive-semigroup-Euclidean-Domain : Semigroup l additive-semigroup-Euclidean-Domain = semigroup-Ab ab-Euclidean-Domain is-group-additive-semigroup-Euclidean-Domain : is-group-Semigroup additive-semigroup-Euclidean-Domain is-group-additive-semigroup-Euclidean-Domain = is-group-Ab ab-Euclidean-Domain commutative-add-Euclidean-Domain : (x y : type-Euclidean-Domain) → Id (add-Euclidean-Domain x y) (add-Euclidean-Domain y x) commutative-add-Euclidean-Domain = commutative-add-Ab ab-Euclidean-Domain interchange-add-add-Euclidean-Domain : (x y x' y' : type-Euclidean-Domain) → ( add-Euclidean-Domain ( add-Euclidean-Domain x y) ( add-Euclidean-Domain x' y')) = ( add-Euclidean-Domain ( add-Euclidean-Domain x x') ( add-Euclidean-Domain y y')) interchange-add-add-Euclidean-Domain = interchange-add-add-Integral-Domain integral-domain-Euclidean-Domain right-swap-add-Euclidean-Domain : (x y z : type-Euclidean-Domain) → ( add-Euclidean-Domain (add-Euclidean-Domain x y) z) = ( add-Euclidean-Domain (add-Euclidean-Domain x z) y) right-swap-add-Euclidean-Domain = right-swap-add-Integral-Domain integral-domain-Euclidean-Domain left-swap-add-Euclidean-Domain : (x y z : type-Euclidean-Domain) → ( add-Euclidean-Domain x (add-Euclidean-Domain y z)) = ( add-Euclidean-Domain y (add-Euclidean-Domain x z)) left-swap-add-Euclidean-Domain = left-swap-add-Integral-Domain integral-domain-Euclidean-Domain is-equiv-add-Euclidean-Domain : (x : type-Euclidean-Domain) → is-equiv (add-Euclidean-Domain x) is-equiv-add-Euclidean-Domain = is-equiv-add-Ab ab-Euclidean-Domain is-equiv-add-Euclidean-Domain' : (x : type-Euclidean-Domain) → is-equiv (add-Euclidean-Domain' x) is-equiv-add-Euclidean-Domain' = is-equiv-add-Ab' ab-Euclidean-Domain is-binary-equiv-add-Euclidean-Domain : is-binary-equiv add-Euclidean-Domain pr1 is-binary-equiv-add-Euclidean-Domain = is-equiv-add-Euclidean-Domain' pr2 is-binary-equiv-add-Euclidean-Domain = is-equiv-add-Euclidean-Domain is-binary-emb-add-Euclidean-Domain : is-binary-emb add-Euclidean-Domain is-binary-emb-add-Euclidean-Domain = is-binary-emb-add-Ab ab-Euclidean-Domain is-emb-add-Euclidean-Domain : (x : type-Euclidean-Domain) → is-emb (add-Euclidean-Domain x) is-emb-add-Euclidean-Domain = is-emb-add-Ab ab-Euclidean-Domain is-emb-add-Euclidean-Domain' : (x : type-Euclidean-Domain) → is-emb (add-Euclidean-Domain' x) is-emb-add-Euclidean-Domain' = is-emb-add-Ab' ab-Euclidean-Domain is-injective-add-Euclidean-Domain : (x : type-Euclidean-Domain) → is-injective (add-Euclidean-Domain x) is-injective-add-Euclidean-Domain = is-injective-add-Ab ab-Euclidean-Domain is-injective-add-Euclidean-Domain' : (x : type-Euclidean-Domain) → is-injective (add-Euclidean-Domain' x) is-injective-add-Euclidean-Domain' = is-injective-add-Ab' ab-Euclidean-Domain
The zero element of a Euclidean domain
has-zero-Euclidean-Domain : is-unital add-Euclidean-Domain has-zero-Euclidean-Domain = has-zero-Integral-Domain integral-domain-Euclidean-Domain zero-Euclidean-Domain : type-Euclidean-Domain zero-Euclidean-Domain = zero-Integral-Domain integral-domain-Euclidean-Domain is-zero-Euclidean-Domain : type-Euclidean-Domain → UU l is-zero-Euclidean-Domain = is-zero-Integral-Domain integral-domain-Euclidean-Domain is-nonzero-Euclidean-Domain : type-Euclidean-Domain → UU l is-nonzero-Euclidean-Domain = is-nonzero-Integral-Domain integral-domain-Euclidean-Domain is-zero-euclidean-domain-Prop : type-Euclidean-Domain → Prop l is-zero-euclidean-domain-Prop x = Id-Prop set-Euclidean-Domain x zero-Euclidean-Domain is-nonzero-euclidean-domain-Prop : type-Euclidean-Domain → Prop l is-nonzero-euclidean-domain-Prop x = neg-Prop (is-zero-euclidean-domain-Prop x) left-unit-law-add-Euclidean-Domain : (x : type-Euclidean-Domain) → add-Euclidean-Domain zero-Euclidean-Domain x = x left-unit-law-add-Euclidean-Domain = left-unit-law-add-Integral-Domain integral-domain-Euclidean-Domain right-unit-law-add-Euclidean-Domain : (x : type-Euclidean-Domain) → add-Euclidean-Domain x zero-Euclidean-Domain = x right-unit-law-add-Euclidean-Domain = right-unit-law-add-Integral-Domain integral-domain-Euclidean-Domain
Additive inverses in a Euclidean domain
has-negatives-Euclidean-Domain : is-group-is-unital-Semigroup ( additive-semigroup-Euclidean-Domain) ( has-zero-Euclidean-Domain) has-negatives-Euclidean-Domain = has-negatives-Ab ab-Euclidean-Domain neg-Euclidean-Domain : type-Euclidean-Domain → type-Euclidean-Domain neg-Euclidean-Domain = neg-Integral-Domain integral-domain-Euclidean-Domain left-inverse-law-add-Euclidean-Domain : (x : type-Euclidean-Domain) → add-Euclidean-Domain (neg-Euclidean-Domain x) x = zero-Euclidean-Domain left-inverse-law-add-Euclidean-Domain = left-inverse-law-add-Integral-Domain integral-domain-Euclidean-Domain right-inverse-law-add-Euclidean-Domain : (x : type-Euclidean-Domain) → add-Euclidean-Domain x (neg-Euclidean-Domain x) = zero-Euclidean-Domain right-inverse-law-add-Euclidean-Domain = right-inverse-law-add-Integral-Domain integral-domain-Euclidean-Domain neg-neg-Euclidean-Domain : (x : type-Euclidean-Domain) → neg-Euclidean-Domain (neg-Euclidean-Domain x) = x neg-neg-Euclidean-Domain = neg-neg-Ab ab-Euclidean-Domain distributive-neg-add-Euclidean-Domain : (x y : type-Euclidean-Domain) → neg-Euclidean-Domain (add-Euclidean-Domain x y) = add-Euclidean-Domain (neg-Euclidean-Domain x) (neg-Euclidean-Domain y) distributive-neg-add-Euclidean-Domain = distributive-neg-add-Ab ab-Euclidean-Domain
Multiplication in a Euclidean domain
has-associative-mul-Euclidean-Domain : has-associative-mul-Set set-Euclidean-Domain has-associative-mul-Euclidean-Domain = has-associative-mul-Integral-Domain integral-domain-Euclidean-Domain mul-Euclidean-Domain : (x y : type-Euclidean-Domain) → type-Euclidean-Domain mul-Euclidean-Domain = mul-Integral-Domain integral-domain-Euclidean-Domain mul-Euclidean-Domain' : (x y : type-Euclidean-Domain) → type-Euclidean-Domain mul-Euclidean-Domain' = mul-Integral-Domain' integral-domain-Euclidean-Domain ap-mul-Euclidean-Domain : {x x' y y' : type-Euclidean-Domain} (p : Id x x') (q : Id y y') → Id (mul-Euclidean-Domain x y) (mul-Euclidean-Domain x' y') ap-mul-Euclidean-Domain p q = ap-binary mul-Euclidean-Domain p q associative-mul-Euclidean-Domain : (x y z : type-Euclidean-Domain) → mul-Euclidean-Domain (mul-Euclidean-Domain x y) z = mul-Euclidean-Domain x (mul-Euclidean-Domain y z) associative-mul-Euclidean-Domain = associative-mul-Integral-Domain integral-domain-Euclidean-Domain multiplicative-semigroup-Euclidean-Domain : Semigroup l multiplicative-semigroup-Euclidean-Domain = multiplicative-semigroup-Integral-Domain integral-domain-Euclidean-Domain left-distributive-mul-add-Euclidean-Domain : (x y z : type-Euclidean-Domain) → ( mul-Euclidean-Domain x (add-Euclidean-Domain y z)) = ( add-Euclidean-Domain ( mul-Euclidean-Domain x y) ( mul-Euclidean-Domain x z)) left-distributive-mul-add-Euclidean-Domain = left-distributive-mul-add-Integral-Domain integral-domain-Euclidean-Domain right-distributive-mul-add-Euclidean-Domain : (x y z : type-Euclidean-Domain) → ( mul-Euclidean-Domain (add-Euclidean-Domain x y) z) = ( add-Euclidean-Domain ( mul-Euclidean-Domain x z) ( mul-Euclidean-Domain y z)) right-distributive-mul-add-Euclidean-Domain = right-distributive-mul-add-Integral-Domain integral-domain-Euclidean-Domain commutative-mul-Euclidean-Domain : (x y : type-Euclidean-Domain) → mul-Euclidean-Domain x y = mul-Euclidean-Domain y x commutative-mul-Euclidean-Domain = commutative-mul-Integral-Domain integral-domain-Euclidean-Domain
Multiplicative units in a Euclidean domain
is-unital-Euclidean-Domain : is-unital mul-Euclidean-Domain is-unital-Euclidean-Domain = is-unital-Integral-Domain integral-domain-Euclidean-Domain multiplicative-monoid-Euclidean-Domain : Monoid l multiplicative-monoid-Euclidean-Domain = multiplicative-monoid-Integral-Domain integral-domain-Euclidean-Domain one-Euclidean-Domain : type-Euclidean-Domain one-Euclidean-Domain = one-Integral-Domain integral-domain-Euclidean-Domain left-unit-law-mul-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-Euclidean-Domain one-Euclidean-Domain x = x left-unit-law-mul-Euclidean-Domain = left-unit-law-mul-Integral-Domain integral-domain-Euclidean-Domain right-unit-law-mul-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-Euclidean-Domain x one-Euclidean-Domain = x right-unit-law-mul-Euclidean-Domain = right-unit-law-mul-Integral-Domain integral-domain-Euclidean-Domain right-swap-mul-Euclidean-Domain : (x y z : type-Euclidean-Domain) → mul-Euclidean-Domain (mul-Euclidean-Domain x y) z = mul-Euclidean-Domain (mul-Euclidean-Domain x z) y right-swap-mul-Euclidean-Domain x y z = ( associative-mul-Euclidean-Domain x y z) ∙ ( ( ap ( mul-Euclidean-Domain x) ( commutative-mul-Euclidean-Domain y z)) ∙ ( inv (associative-mul-Euclidean-Domain x z y))) left-swap-mul-Euclidean-Domain : (x y z : type-Euclidean-Domain) → mul-Euclidean-Domain x (mul-Euclidean-Domain y z) = mul-Euclidean-Domain y (mul-Euclidean-Domain x z) left-swap-mul-Euclidean-Domain x y z = ( inv (associative-mul-Euclidean-Domain x y z)) ∙ ( ( ap ( mul-Euclidean-Domain' z) ( commutative-mul-Euclidean-Domain x y)) ∙ ( associative-mul-Euclidean-Domain y x z)) interchange-mul-mul-Euclidean-Domain : (x y z w : type-Euclidean-Domain) → mul-Euclidean-Domain ( mul-Euclidean-Domain x y) ( mul-Euclidean-Domain z w) = mul-Euclidean-Domain ( mul-Euclidean-Domain x z) ( mul-Euclidean-Domain y w) interchange-mul-mul-Euclidean-Domain = interchange-law-commutative-and-associative mul-Euclidean-Domain commutative-mul-Euclidean-Domain associative-mul-Euclidean-Domain
The zero laws for multiplication of a Euclidean domain
left-zero-law-mul-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-Euclidean-Domain zero-Euclidean-Domain x = zero-Euclidean-Domain left-zero-law-mul-Euclidean-Domain = left-zero-law-mul-Integral-Domain integral-domain-Euclidean-Domain right-zero-law-mul-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-Euclidean-Domain x zero-Euclidean-Domain = zero-Euclidean-Domain right-zero-law-mul-Euclidean-Domain = right-zero-law-mul-Integral-Domain integral-domain-Euclidean-Domain
Euclidean domains are commutative semirings
multiplicative-commutative-monoid-Euclidean-Domain : Commutative-Monoid l multiplicative-commutative-monoid-Euclidean-Domain = multiplicative-commutative-monoid-Integral-Domain integral-domain-Euclidean-Domain semiring-Euclidean-Domain : Semiring l semiring-Euclidean-Domain = semiring-Integral-Domain integral-domain-Euclidean-Domain commutative-semiring-Euclidean-Domain : Commutative-Semiring l commutative-semiring-Euclidean-Domain = commutative-semiring-Integral-Domain integral-domain-Euclidean-Domain
Computing multiplication with minus one in a Euclidean domain
neg-one-Euclidean-Domain : type-Euclidean-Domain neg-one-Euclidean-Domain = neg-one-Integral-Domain integral-domain-Euclidean-Domain mul-neg-one-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-Euclidean-Domain neg-one-Euclidean-Domain x = neg-Euclidean-Domain x mul-neg-one-Euclidean-Domain = mul-neg-one-Integral-Domain integral-domain-Euclidean-Domain mul-neg-one-Euclidean-Domain' : (x : type-Euclidean-Domain) → mul-Euclidean-Domain x neg-one-Euclidean-Domain = neg-Euclidean-Domain x mul-neg-one-Euclidean-Domain' = mul-neg-one-Integral-Domain' integral-domain-Euclidean-Domain is-involution-mul-neg-one-Euclidean-Domain : is-involution (mul-Euclidean-Domain neg-one-Euclidean-Domain) is-involution-mul-neg-one-Euclidean-Domain = is-involution-mul-neg-one-Integral-Domain integral-domain-Euclidean-Domain is-involution-mul-neg-one-Euclidean-Domain' : is-involution (mul-Euclidean-Domain' neg-one-Euclidean-Domain) is-involution-mul-neg-one-Euclidean-Domain' = is-involution-mul-neg-one-Integral-Domain' integral-domain-Euclidean-Domain
Left and right negative laws for multiplication
left-negative-law-mul-Euclidean-Domain : (x y : type-Euclidean-Domain) → mul-Euclidean-Domain (neg-Euclidean-Domain x) y = neg-Euclidean-Domain (mul-Euclidean-Domain x y) left-negative-law-mul-Euclidean-Domain = left-negative-law-mul-Integral-Domain integral-domain-Euclidean-Domain right-negative-law-mul-Euclidean-Domain : (x y : type-Euclidean-Domain) → mul-Euclidean-Domain x (neg-Euclidean-Domain y) = neg-Euclidean-Domain (mul-Euclidean-Domain x y) right-negative-law-mul-Euclidean-Domain = right-negative-law-mul-Integral-Domain integral-domain-Euclidean-Domain mul-neg-Euclidean-Domain : (x y : type-Euclidean-Domain) → mul-Euclidean-Domain (neg-Euclidean-Domain x) (neg-Euclidean-Domain y) = mul-Euclidean-Domain x y mul-neg-Euclidean-Domain = mul-neg-Integral-Domain integral-domain-Euclidean-Domain
Scalar multiplication of elements of a Euclidean domain by natural numbers
mul-nat-scalar-Euclidean-Domain : ℕ → type-Euclidean-Domain → type-Euclidean-Domain mul-nat-scalar-Euclidean-Domain = mul-nat-scalar-Integral-Domain integral-domain-Euclidean-Domain ap-mul-nat-scalar-Euclidean-Domain : {m n : ℕ} {x y : type-Euclidean-Domain} → (m = n) → (x = y) → mul-nat-scalar-Euclidean-Domain m x = mul-nat-scalar-Euclidean-Domain n y ap-mul-nat-scalar-Euclidean-Domain = ap-mul-nat-scalar-Integral-Domain integral-domain-Euclidean-Domain left-zero-law-mul-nat-scalar-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-nat-scalar-Euclidean-Domain 0 x = zero-Euclidean-Domain left-zero-law-mul-nat-scalar-Euclidean-Domain = left-zero-law-mul-nat-scalar-Integral-Domain integral-domain-Euclidean-Domain right-zero-law-mul-nat-scalar-Euclidean-Domain : (n : ℕ) → mul-nat-scalar-Euclidean-Domain n zero-Euclidean-Domain = zero-Euclidean-Domain right-zero-law-mul-nat-scalar-Euclidean-Domain = right-zero-law-mul-nat-scalar-Integral-Domain integral-domain-Euclidean-Domain left-unit-law-mul-nat-scalar-Euclidean-Domain : (x : type-Euclidean-Domain) → mul-nat-scalar-Euclidean-Domain 1 x = x left-unit-law-mul-nat-scalar-Euclidean-Domain = left-unit-law-mul-nat-scalar-Integral-Domain integral-domain-Euclidean-Domain left-nat-scalar-law-mul-Euclidean-Domain : (n : ℕ) (x y : type-Euclidean-Domain) → mul-Euclidean-Domain (mul-nat-scalar-Euclidean-Domain n x) y = mul-nat-scalar-Euclidean-Domain n (mul-Euclidean-Domain x y) left-nat-scalar-law-mul-Euclidean-Domain = left-nat-scalar-law-mul-Integral-Domain integral-domain-Euclidean-Domain right-nat-scalar-law-mul-Euclidean-Domain : (n : ℕ) (x y : type-Euclidean-Domain) → mul-Euclidean-Domain x (mul-nat-scalar-Euclidean-Domain n y) = mul-nat-scalar-Euclidean-Domain n (mul-Euclidean-Domain x y) right-nat-scalar-law-mul-Euclidean-Domain = right-nat-scalar-law-mul-Integral-Domain integral-domain-Euclidean-Domain left-distributive-mul-nat-scalar-add-Euclidean-Domain : (n : ℕ) (x y : type-Euclidean-Domain) → mul-nat-scalar-Euclidean-Domain n (add-Euclidean-Domain x y) = add-Euclidean-Domain ( mul-nat-scalar-Euclidean-Domain n x) ( mul-nat-scalar-Euclidean-Domain n y) left-distributive-mul-nat-scalar-add-Euclidean-Domain = left-distributive-mul-nat-scalar-add-Integral-Domain integral-domain-Euclidean-Domain right-distributive-mul-nat-scalar-add-Euclidean-Domain : (m n : ℕ) (x : type-Euclidean-Domain) → mul-nat-scalar-Euclidean-Domain (m +ℕ n) x = add-Euclidean-Domain ( mul-nat-scalar-Euclidean-Domain m x) ( mul-nat-scalar-Euclidean-Domain n x) right-distributive-mul-nat-scalar-add-Euclidean-Domain = right-distributive-mul-nat-scalar-add-Integral-Domain integral-domain-Euclidean-Domain
Addition of a list of elements in a Euclidean domain
add-list-Euclidean-Domain : list type-Euclidean-Domain → type-Euclidean-Domain add-list-Euclidean-Domain = add-list-Integral-Domain integral-domain-Euclidean-Domain preserves-concat-add-list-Euclidean-Domain : (l1 l2 : list type-Euclidean-Domain) → Id ( add-list-Euclidean-Domain (concat-list l1 l2)) ( add-Euclidean-Domain ( add-list-Euclidean-Domain l1) ( add-list-Euclidean-Domain l2)) preserves-concat-add-list-Euclidean-Domain = preserves-concat-add-list-Integral-Domain integral-domain-Euclidean-Domain
Euclidean division in a Euclidean domain
euclidean-valuation-Euclidean-Domain : type-Euclidean-Domain → ℕ euclidean-valuation-Euclidean-Domain = pr1 is-euclidean-domain-Euclidean-Domain euclidean-division-Euclidean-Domain : ( x y : type-Euclidean-Domain) → ( is-nonzero-Euclidean-Domain y) → type-Euclidean-Domain × type-Euclidean-Domain euclidean-division-Euclidean-Domain x y p = pr1 (pr2 is-euclidean-domain-Euclidean-Domain x y p) quotient-euclidean-division-Euclidean-Domain : ( x y : type-Euclidean-Domain) → ( is-nonzero-Euclidean-Domain y) → type-Euclidean-Domain quotient-euclidean-division-Euclidean-Domain x y p = pr1 (euclidean-division-Euclidean-Domain x y p) remainder-euclidean-division-Euclidean-Domain : ( x y : type-Euclidean-Domain) → ( is-nonzero-Euclidean-Domain y) → type-Euclidean-Domain remainder-euclidean-division-Euclidean-Domain x y p = pr2 (euclidean-division-Euclidean-Domain x y p) equation-euclidean-division-Euclidean-Domain : ( x y : type-Euclidean-Domain) → ( p : is-nonzero-Euclidean-Domain y) → ( Id ( x) ( add-Euclidean-Domain ( mul-Euclidean-Domain ( quotient-euclidean-division-Euclidean-Domain x y p) ( y)) ( remainder-euclidean-division-Euclidean-Domain x y p))) equation-euclidean-division-Euclidean-Domain x y p = pr1 (pr2 (pr2 is-euclidean-domain-Euclidean-Domain x y p)) remainder-condition-euclidean-division-Euclidean-Domain : ( x y : type-Euclidean-Domain) → ( p : is-nonzero-Integral-Domain integral-domain-Euclidean-Domain y) → ( is-zero-Euclidean-Domain ( remainder-euclidean-division-Euclidean-Domain x y p)) + ( euclidean-valuation-Euclidean-Domain ( remainder-euclidean-division-Euclidean-Domain x y p) <-ℕ ( euclidean-valuation-Euclidean-Domain y)) remainder-condition-euclidean-division-Euclidean-Domain x y p = pr2 (pr2 (pr2 is-euclidean-domain-Euclidean-Domain x y p))
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-09-10. Fredrik Bakke. Define precedence levels and associativities for all binary operators (#712).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).