Torsion-free groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-06.
Last modified on 2024-04-25.
module group-theory.torsion-free-groups where
Imports
open import elementary-number-theory.group-of-integers open import elementary-number-theory.nonzero-integers open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.sets open import foundation.singleton-subtypes open import foundation.standard-pullbacks open import foundation.universe-levels open import group-theory.groups open import group-theory.integer-powers-of-elements-groups open import group-theory.orders-of-elements-groups open import group-theory.subgroups open import group-theory.torsion-elements-groups
Idea
A torsion-free group is a group G
in which any
element of finite order is the
identity element. In other words, torsion-free groups are groups in which the
condition
∀ (k : nonzero-ℤ), xᵏ = 1 → x = 1
holds for all elements x : G
. This condition can be formulated in several
equivalent ways:
∀ (k : nonzero-ℤ), xᵏ = 1 → x = 1
.- The subset of
G
of torsion elements is a singleton subtype. - The map
p
in the pullback square
is an equivalence.q · ---------> Prop | ⌟ | p| | P ↦ {k : ℤ ∣ (k = 0) ∨ P} ∨ ∨ G -------> Subgroup ℤ order
Definitions
The predicate of being a torsion-free group
module _ {l1 : Level} (G : Group l1) where is-torsion-free-prop-Group : Prop l1 is-torsion-free-prop-Group = Π-Prop ( type-Group G) ( λ x → Π-Prop ( nonzero-ℤ) ( λ k → function-Prop ( integer-power-Group G (int-nonzero-ℤ k) x = unit-Group G) ( Id-Prop (set-Group G) x (unit-Group G)))) is-torsion-free-Group : UU l1 is-torsion-free-Group = type-Prop is-torsion-free-prop-Group is-prop-is-torsion-free-Group : is-prop is-torsion-free-Group is-prop-is-torsion-free-Group = is-prop-type-Prop is-torsion-free-prop-Group
The predicate that a group has a unique torsion element
module _ {l1 : Level} (G : Group l1) where has-unique-torsion-element-prop-Group : Prop l1 has-unique-torsion-element-prop-Group = is-singleton-subtype-Prop (is-torsion-element-prop-Group G) has-unique-torsion-element-Group : UU l1 has-unique-torsion-element-Group = is-singleton-subtype (is-torsion-element-prop-Group G) is-prop-has-unique-torsion-element-Group : is-prop has-unique-torsion-element-Group is-prop-has-unique-torsion-element-Group = is-prop-is-singleton-subtype (is-torsion-element-prop-Group G)
The predicate that the first projection of the pullback of Prop lzero → Subgroup ℤ
along order : G → Subgroup ℤ
is an equivalence
module _ {l1 : Level} (G : Group l1) where is-equiv-vertical-map-standard-pullback-subgroup-prop-prop-Group : Prop (lsuc l1) is-equiv-vertical-map-standard-pullback-subgroup-prop-prop-Group = is-equiv-Prop ( vertical-map-standard-pullback { f = subgroup-order-element-Group G} { g = subgroup-Prop ℤ-Group}) is-equiv-first-projection-pullback-subgroup-prop-Group : UU (lsuc l1) is-equiv-first-projection-pullback-subgroup-prop-Group = type-Prop is-equiv-vertical-map-standard-pullback-subgroup-prop-prop-Group is-prop-is-equiv-first-projection-pullback-subgroup-prop-Group : is-prop is-equiv-first-projection-pullback-subgroup-prop-Group is-prop-is-equiv-first-projection-pullback-subgroup-prop-Group = is-prop-type-Prop ( is-equiv-vertical-map-standard-pullback-subgroup-prop-prop-Group)
Properties
The two definitions of torsion-free groups are equivalent
module _ {l1 : Level} (G : Group l1) where is-torsion-free-has-unique-torsion-element-Group : has-unique-torsion-element-Group G → is-torsion-free-Group G is-torsion-free-has-unique-torsion-element-Group H x k p = ap pr1 (eq-is-contr H {x , intro-exists k p} {unit-torsion-element-Group G}) abstract has-unique-torsion-element-is-torsion-free-Group : is-torsion-free-Group G → has-unique-torsion-element-Group G has-unique-torsion-element-is-torsion-free-Group H = fundamental-theorem-id' ( λ where x refl → is-torsion-element-unit-Group G) ( λ x → is-equiv-has-converse-is-prop ( is-set-type-Group G (unit-Group G) x) ( is-prop-is-torsion-element-Group G x) ( elim-exists ( Id-Prop (set-Group G) (unit-Group G) x) ( λ k p → inv (H x k p))))
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. Sequential limits (#839).