Resizing suplattices
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.resizing-suplattices where
Imports
open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.injective-maps open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.small-types open import foundation.universe-levels open import order-theory.least-upper-bounds-posets open import order-theory.order-preserving-maps-posets open import order-theory.posets open import order-theory.resizing-posets open import order-theory.suplattices
Idea
Given a suplattice P
on a
small carrier type X
, then there is an equivalent
resized suplattice¶ on the small
equivalent.
Definitions
Resizing the underlying type of a suplattice
module _ {l1 l2 l3 l4 : Level} (P : Suplattice l1 l2 l3) (H : is-small l4 (type-Suplattice P)) where poset-resize-Suplattice : Poset l4 l2 poset-resize-Suplattice = resize-Poset (poset-Suplattice P) H sup-resize-Suplattice : {I : UU l3} → (I → type-is-small H) → type-is-small H sup-resize-Suplattice x = map-equiv-is-small H (sup-Suplattice P (map-inv-equiv-is-small H ∘ x)) is-least-upper-bound-sup-resize-Suplattice : {I : UU l3} (x : I → type-is-small H) → is-least-upper-bound-family-of-elements-Poset poset-resize-Suplattice x ( sup-resize-Suplattice x) is-least-upper-bound-sup-resize-Suplattice x u = ( concatenate-eq-leq-Poset ( poset-Suplattice P) ( is-retraction-map-inv-equiv-is-small H ( sup-Suplattice P (map-inv-equiv-is-small H ∘ x))) ∘ pr1 ( is-least-upper-bound-sup-Suplattice P ( map-inv-equiv-is-small H ∘ x) ( map-inv-equiv-is-small H u))) , ( pr2 ( is-least-upper-bound-sup-Suplattice P ( map-inv-equiv-is-small H ∘ x) ( map-inv-equiv-is-small H u)) ∘ ( concatenate-eq-leq-Poset ( poset-Suplattice P) ( inv ( is-retraction-map-inv-equiv-is-small H ( sup-Suplattice P (map-inv-equiv-is-small H ∘ x)))))) is-suplattice-resize-Suplattice : is-suplattice-Poset l3 poset-resize-Suplattice is-suplattice-resize-Suplattice I x = ( sup-resize-Suplattice x , is-least-upper-bound-sup-resize-Suplattice x) resize-Suplattice : Suplattice l4 l2 l3 resize-Suplattice = ( poset-resize-Suplattice , is-suplattice-resize-Suplattice)
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).