Resizing suplattices

Content created by Fredrik Bakke.

Created on 2024-11-20.
Last modified on 2024-11-20.

module order-theory.resizing-suplattices where
Imports
open import foundation.binary-relations
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.negated-equality
open import foundation.negation
open import foundation.propositions
open import foundation.sets
open import foundation.small-types
open import foundation.universe-levels

open import order-theory.least-upper-bounds-posets
open import order-theory.order-preserving-maps-posets
open import order-theory.posets
open import order-theory.resizing-posets
open import order-theory.suplattices

Idea

Given a suplattice P on a small carrier type X, then there is an equivalent resized suplattice on the small equivalent.

Definitions

Resizing the underlying type of a suplattice

module _
  {l1 l2 l3 l4 : Level}
  (P : Suplattice l1 l2 l3) (H : is-small l4 (type-Suplattice P))
  where

  poset-resize-Suplattice : Poset l4 l2
  poset-resize-Suplattice =
    resize-Poset (poset-Suplattice P) H

  sup-resize-Suplattice :
    {I : UU l3}  (I  type-is-small H)  type-is-small H
  sup-resize-Suplattice x =
    map-equiv-is-small H (sup-Suplattice P (map-inv-equiv-is-small H  x))

  is-least-upper-bound-sup-resize-Suplattice :
    {I : UU l3} (x : I  type-is-small H) 
    is-least-upper-bound-family-of-elements-Poset poset-resize-Suplattice x
      ( sup-resize-Suplattice x)
  is-least-upper-bound-sup-resize-Suplattice x u =
      ( concatenate-eq-leq-Poset
          ( poset-Suplattice P)
          ( is-retraction-map-inv-equiv-is-small H
            ( sup-Suplattice P (map-inv-equiv-is-small H  x))) 
        pr1
          ( is-least-upper-bound-sup-Suplattice P
            ( map-inv-equiv-is-small H  x)
            ( map-inv-equiv-is-small H u))) ,
      ( pr2
          ( is-least-upper-bound-sup-Suplattice P
            ( map-inv-equiv-is-small H  x)
            ( map-inv-equiv-is-small H u)) 
          ( concatenate-eq-leq-Poset
            ( poset-Suplattice P)
            ( inv
              ( is-retraction-map-inv-equiv-is-small H
                ( sup-Suplattice P (map-inv-equiv-is-small H  x))))))

  is-suplattice-resize-Suplattice :
    is-suplattice-Poset l3 poset-resize-Suplattice
  is-suplattice-resize-Suplattice I x =
    ( sup-resize-Suplattice x ,
      is-least-upper-bound-sup-resize-Suplattice x)

  resize-Suplattice : Suplattice l4 l2 l3
  resize-Suplattice =
    ( poset-resize-Suplattice ,
      is-suplattice-resize-Suplattice)

Recent changes