Conjugation of loops

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-07-19.
Last modified on 2025-11-06.

module synthetic-homotopy-theory.conjugation-loops where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import structured-types.pointed-equivalences
open import structured-types.pointed-homotopies
open import structured-types.pointed-maps

open import synthetic-homotopy-theory.loop-spaces

Idea

For any identification p : x = y in a type A there is a conjugation action Ω (A , x) →∗ Ω (A , y) on loop spaces, which is the pointed map given by ω ↦ p⁻¹ωp.

Definition

The standard definition of conjugation on loop spaces

module _
  {l : Level} {A : UU l}
  where

  conjugation-type-Ω : {x y : A} (p : x  y)  type-Ω (A , x)  type-Ω (A , y)
  conjugation-type-Ω p ω = inv p  (ω  p)

  preserves-point-conjugation-Ω :
    {x y : A} (p : x  y)  conjugation-type-Ω p refl  refl
  preserves-point-conjugation-Ω p = left-inv p

  conjugation-Ω : {x y : A} (p : x  y)  Ω (A , x) →∗ Ω (A , y)
  pr1 (conjugation-Ω p) = conjugation-type-Ω p
  pr2 (conjugation-Ω p) = preserves-point-conjugation-Ω p

Properties

Conjugation is a pointed equivalence

module _
  {l : Level} {A : UU l}
  where

  is-equiv-conjugation-type-Ω :
    {x y : A} (p : x  y)  is-equiv (conjugation-type-Ω p)
  is-equiv-conjugation-type-Ω {x} {y} p =
    is-equiv-comp
      ( concat (inv p) y)
      ( concat' x p)
      ( is-equiv-concat' x p)
      ( is-equiv-concat (inv p) y)

  equiv-conjugation-type-Ω :
    {x y : A} (p : x  y)  type-Ω (A , x)  type-Ω (A , y)
  equiv-conjugation-type-Ω p =
    ( conjugation-type-Ω p , is-equiv-conjugation-type-Ω p)

  equiv-conjugation-Ω :
    {x y : A} (p : x  y)  Ω (A , x) ≃∗ Ω (A , y)
  equiv-conjugation-Ω p =
    ( equiv-conjugation-type-Ω p , preserves-point-conjugation-Ω p)

Conjugation on loop spaces is homotopic to transport

module _
  {l : Level} {A : UU l}
  where

  htpy-compute-conjugation-Ω :
    {x y : A} (p : x  y)  conjugation-type-Ω p ~ tr-type-Ω p
  htpy-compute-conjugation-Ω refl ω = right-unit

  coherence-point-compute-conjugation-Ω :
    {x y : A} (p : x  y) 
    coherence-point-unpointed-htpy-pointed-Π
      ( conjugation-Ω p)
      ( tr-Ω p)
      ( htpy-compute-conjugation-Ω p)
  coherence-point-compute-conjugation-Ω refl = refl

  compute-conjugation-Ω :
    {x y : A} (p : x  y)  conjugation-Ω p ~∗ tr-Ω p
  pr1 (compute-conjugation-Ω p) = htpy-compute-conjugation-Ω p
  pr2 (compute-conjugation-Ω p) = coherence-point-compute-conjugation-Ω p

Recent changes