Contractible maps

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Daniel Gratzer and Elisabeth Stenholm.

Created on 2022-01-26.
Last modified on 2024-01-31.

module foundation.contractible-maps where

open import foundation-core.contractible-maps public
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.logical-equivalences
open import foundation.truncated-maps
open import foundation.universe-levels

open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.propositions
open import foundation-core.truncation-levels

Properties

Being a contractible map is a property

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  is-prop-is-contr-map : (f : A  B)  is-prop (is-contr-map f)
  is-prop-is-contr-map f = is-prop-is-trunc-map neg-two-𝕋 f

  is-contr-map-Prop : (A  B)  Prop (l1  l2)
  pr1 (is-contr-map-Prop f) = is-contr-map f
  pr2 (is-contr-map-Prop f) = is-prop-is-contr-map f

Being a contractible map is equivalent to being an equivalence

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  equiv-is-equiv-is-contr-map : (f : A  B)  is-contr-map f  is-equiv f
  equiv-is-equiv-is-contr-map f =
    equiv-iff
      ( is-contr-map-Prop f)
      ( is-equiv-Prop f)
      ( is-equiv-is-contr-map)
      ( is-contr-map-is-equiv)

  equiv-is-contr-map-is-equiv : (f : A  B)  is-equiv f  is-contr-map f
  equiv-is-contr-map-is-equiv f =
    equiv-iff
      ( is-equiv-Prop f)
      ( is-contr-map-Prop f)
      ( is-contr-map-is-equiv)
      ( is-equiv-is-contr-map)

Contractible maps are closed under homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A  B} (H : f ~ g)
  where

  is-contr-map-htpy : is-contr-map g  is-contr-map f
  is-contr-map-htpy = is-trunc-map-htpy neg-two-𝕋 H

Contractible maps are closed under composition

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (g : B  X) (h : A  B)
  where

  is-contr-map-comp : is-contr-map g  is-contr-map h  is-contr-map (g  h)
  is-contr-map-comp = is-trunc-map-comp neg-two-𝕋 g h

In a commuting triangle f ~ g ∘ h, if g and h are contractible maps, then f is a contractible map

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X) (h : A  B) (H : f ~ (g  h))
  where

  is-contr-map-left-map-triangle :
    is-contr-map g  is-contr-map h  is-contr-map f
  is-contr-map-left-map-triangle =
    is-trunc-map-left-map-triangle neg-two-𝕋 f g h H

In a commuting triangle f ~ g ∘ h, if f and g are contractible maps, then h is a contractible map

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X) (h : A  B) (H : f ~ (g  h))
  where

  is-contr-map-top-map-triangle :
    is-contr-map g  is-contr-map f  is-contr-map h
  is-contr-map-top-map-triangle =
    is-trunc-map-top-map-triangle neg-two-𝕋 f g h H

If a composite g ∘ h and its left factor g are contractible maps, then its right factor h is a contractible map

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (g : B  X) (h : A  B)
  where

  is-contr-map-right-factor :
    is-contr-map g  is-contr-map (g  h)  is-contr-map h
  is-contr-map-right-factor =
    is-trunc-map-right-factor neg-two-𝕋 g h

See also

Recent changes