Negative closed intervals in the rational numbers
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module elementary-number-theory.negative-closed-intervals-rational-numbers where
Imports
open import elementary-number-theory.closed-intervals-rational-numbers open import elementary-number-theory.negative-rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
A closed interval of rational numbers is negative¶ if every element in it is negative, or equivalently, its upper bound is negative.
Definition
is-negative-prop-closed-interval-ℚ : closed-interval-ℚ → Prop lzero is-negative-prop-closed-interval-ℚ ((a , b) , _) = is-negative-prop-ℚ b is-negative-closed-interval-ℚ : closed-interval-ℚ → UU lzero is-negative-closed-interval-ℚ ((a , b) , _) = is-negative-ℚ b abstract is-negative-lower-bound-is-negative-closed-interval-ℚ : ([a,b] : closed-interval-ℚ) → is-negative-closed-interval-ℚ [a,b] → is-negative-ℚ (lower-bound-closed-interval-ℚ [a,b]) is-negative-lower-bound-is-negative-closed-interval-ℚ ((a , b) , a≤b) neg-b = is-negative-leq-ℚ⁻ (b , neg-b) a≤b
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).