Local rings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Gregor Perčič.
Created on 2022-05-27.
Last modified on 2024-02-06.
module ring-theory.local-rings where
Imports
open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import ring-theory.invertible-elements-rings open import ring-theory.rings
Idea
A local ring is a ring such that whenever a sum of elements is invertible, then one of its summands is invertible. This implies that the noninvertible elements form an ideal. However, the law of excluded middle is needed to show that any ring of which the noninvertible elements form an ideal is a local ring.
Definition
is-local-prop-Ring : {l : Level} (R : Ring l) → Prop l is-local-prop-Ring R = Π-Prop ( type-Ring R) ( λ a → Π-Prop ( type-Ring R) ( λ b → function-Prop ( is-invertible-element-Ring R (add-Ring R a b)) ( disjunction-Prop ( is-invertible-element-prop-Ring R a) ( is-invertible-element-prop-Ring R b)))) is-local-Ring : {l : Level} → Ring l → UU l is-local-Ring R = type-Prop (is-local-prop-Ring R) is-prop-is-local-Ring : {l : Level} (R : Ring l) → is-prop (is-local-Ring R) is-prop-is-local-Ring R = is-prop-type-Prop (is-local-prop-Ring R) Local-Ring : (l : Level) → UU (lsuc l) Local-Ring l = Σ (Ring l) is-local-Ring module _ {l : Level} (R : Local-Ring l) where ring-Local-Ring : Ring l ring-Local-Ring = pr1 R set-Local-Ring : Set l set-Local-Ring = set-Ring ring-Local-Ring type-Local-Ring : UU l type-Local-Ring = type-Ring ring-Local-Ring is-local-ring-Local-Ring : is-local-Ring ring-Local-Ring is-local-ring-Local-Ring = pr2 R
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-12. Fredrik Bakke. Some minor refactoring surrounding Dedekind reals (#983).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).