Products of Dirichlet series of species of types
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-06-08.
Last modified on 2024-02-06.
module species.products-dirichlet-series-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.postcomposition-functions open import foundation.type-arithmetic-dependent-pair-types open import foundation.univalence open import foundation.universal-property-cartesian-product-types open import foundation.universe-levels open import species.dirichlet-products-species-of-types open import species.dirichlet-series-species-of-types open import species.species-of-types
Idea
The product of two Dirichlet series is the pointwise product.
Definition
module _ {l1 l2 l3 l4 l5 : Level} (H : species-types l1 l2) (C1 : preserves-product-species-types H) (S : species-types l1 l3) (T : species-types l1 l4) (X : UU l5) where product-dirichlet-series-species-types : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) product-dirichlet-series-species-types = dirichlet-series-species-types H C1 S X × dirichlet-series-species-types H C1 T X
Properties
The Dirichlet series associated to the Dirichlet product of S
and T
is equal to the product of theirs Dirichlet series
module _ {l1 l2 l3 l4 : Level} (H : species-types l1 l2) (C1 : preserves-product-species-types H) (S : species-types l1 l2) (T : species-types l1 l3) (X : UU l4) where private reassociate : dirichlet-series-species-types ( H) ( C1) ( dirichlet-product-species-types S T) X ≃ Σ ( UU l1) ( λ A → Σ ( UU l1) ( λ B → Σ ( Σ ( UU l1) (λ F → F ≃ (A × B))) ( λ F → ((S A) × (T B)) × (X → H (pr1 F))))) pr1 reassociate (F , ((A , B , e) , x) , y) = (A , B , (F , e) , x , y) pr2 reassociate = is-equiv-is-invertible ( λ (A , B , (F , e) , x , y) → (F , ((A , B , e) , x) , y)) ( refl-htpy) ( refl-htpy) reassociate' : Σ ( UU l1) ( λ A → Σ (UU l1) (λ B → (S A × T B) × ((X → H A) × (X → H B)))) ≃ product-dirichlet-series-species-types H C1 S T X pr1 reassociate' (A , B , (s , t) , (fs , ft)) = ((A , (s , fs)) , (B , (t , ft))) pr2 reassociate' = is-equiv-is-invertible ( λ ((A , (s , fs)) , (B , (t , ft))) → (A , B , (s , t) , (fs , ft))) ( refl-htpy) ( refl-htpy) equiv-dirichlet-series-dirichlet-product-species-types : dirichlet-series-species-types ( H) ( C1) ( dirichlet-product-species-types S T) ( X) ≃ product-dirichlet-series-species-types H C1 S T X equiv-dirichlet-series-dirichlet-product-species-types = ( reassociate') ∘e ( ( equiv-tot ( λ A → equiv-tot ( λ B → ( equiv-product ( id-equiv) ( equiv-up-product ∘e equiv-postcomp X (C1 A B))) ∘e ( left-unit-law-Σ-is-contr ( is-torsorial-equiv' (A × B)) ( A × B , id-equiv))))) ∘e ( reassociate))
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).
- 2023-12-10. Fredrik Bakke. Refactor universal property of suspensions (#961).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871).