Large Lawvere–Tierney topologies
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-11-05.
Last modified on 2024-11-05.
module orthogonal-factorization-systems.large-lawvere-tierney-topologies where
Imports
open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.function-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import orthogonal-factorization-systems.lawvere-tierney-topologies
Idea
A {#concept “Lawvere–Tierney topology” Disambiguation=“on types”} on types is a hierarchy of maps
j : {l : Level} → Prop l → Prop (δ l)
that is idempotent and preserves the unit type and binary products
j (j P) ≃ j P j unit ≃ unit j (P ∧ Q) ≃ j P ∧ j Q
such operations give rise to a notion of j
-sheaves of types.
Definitions
The predicate on an operator on propositions of defining a Lawvere-Tierney topology
record is-large-lawvere-tierney-topology {δ : Level → Level} (j : {l : Level} → Prop l → Prop (δ l)) : UUω where field is-idempotent-is-large-lawvere-tierney-topology : {l : Level} (P : Prop l) → type-Prop (j (j P) ⇔ j P) preserves-unit-is-large-lawvere-tierney-topology : type-Prop (j unit-Prop ⇔ unit-Prop) preserves-conjunction-is-large-lawvere-tierney-topology : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → type-Prop (j (P ∧ Q) ⇔ j P ∧ j Q) open is-large-lawvere-tierney-topology public
The large type of Lawvere-Tierney topologies
record large-lawvere-tierney-topology (δ : Level → Level) : UUω where field operator-large-lawvere-tierney-topology : {l : Level} → Prop l → Prop (δ l) is-large-lawvere-tierney-topology-large-lawvere-tierney-topology : is-large-lawvere-tierney-topology operator-large-lawvere-tierney-topology is-idempotent-large-lawvere-tierney-topology : {l : Level} (P : Prop l) → type-Prop ( operator-large-lawvere-tierney-topology ( operator-large-lawvere-tierney-topology P) ⇔ operator-large-lawvere-tierney-topology P) is-idempotent-large-lawvere-tierney-topology = is-idempotent-is-large-lawvere-tierney-topology ( is-large-lawvere-tierney-topology-large-lawvere-tierney-topology) preserves-unit-large-lawvere-tierney-topology : type-Prop (operator-large-lawvere-tierney-topology unit-Prop ⇔ unit-Prop) preserves-unit-large-lawvere-tierney-topology = preserves-unit-is-large-lawvere-tierney-topology ( is-large-lawvere-tierney-topology-large-lawvere-tierney-topology) preserves-conjunction-large-lawvere-tierney-topology : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → type-Prop ( operator-large-lawvere-tierney-topology (P ∧ Q) ⇔ operator-large-lawvere-tierney-topology P ∧ operator-large-lawvere-tierney-topology Q) preserves-conjunction-large-lawvere-tierney-topology = preserves-conjunction-is-large-lawvere-tierney-topology ( is-large-lawvere-tierney-topology-large-lawvere-tierney-topology) type-operator-large-lawvere-tierney-topology : {l : Level} → Prop l → UU (δ l) type-operator-large-lawvere-tierney-topology = type-Prop ∘ operator-large-lawvere-tierney-topology open large-lawvere-tierney-topology public
Examples
The identity large Lawvere-Tierney topology
is-large-lawvere-tierney-topology-id : is-large-lawvere-tierney-topology id is-large-lawvere-tierney-topology-id = λ where .is-idempotent-is-large-lawvere-tierney-topology P → id-iff .preserves-unit-is-large-lawvere-tierney-topology → id-iff .preserves-conjunction-is-large-lawvere-tierney-topology P Q → id-iff id-large-lawvere-tierney-topology : large-lawvere-tierney-topology (λ l → l) id-large-lawvere-tierney-topology = λ where .operator-large-lawvere-tierney-topology → id .is-large-lawvere-tierney-topology-large-lawvere-tierney-topology → is-large-lawvere-tierney-topology-id
See also
- (Small) Lawvere-Tierney topologies
- The continuation modalities define Lawvere–Tierney topologies, and as a special case so does the double negation modality.
References
Lawvere–Tierney topologies in the context of Homotopy Type Theory are introduced and studied in Chapter 6 of [Qui16].
- [Qui16]
- Kevin Quirin. Lawvere–Tierney sheafification in Homotopy Type Theory. PhD thesis, École des Mines de Nantes, December 2016. URL: https://kevinquirin.github.io/thesis/main.pdf.
External links
- Lawvere–Tierney topology at Lab
- Lawvere–Tierney topology at Wikipedia
Recent changes
- 2024-11-05. Fredrik Bakke and Egbert Rijke. Continuation modalities and Lawvere–Tierney topologies (#1157).