Cycle partitions of finite types
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-06-20.
Last modified on 2025-02-11.
module univalent-combinatorics.cycle-partitions where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.universe-levels open import univalent-combinatorics.cyclic-finite-types open import univalent-combinatorics.finite-types
Idea
A cycle partition of a finite type A
is a finite family of cyclic finite types
equipped with an equivalence from A
to the total space of the underlying types
of the family. The type of cyclic partitions of A
is equivalent to the type of
permutations of A
.
Definition
cyclic-partition-Finite-Type : {l : Level} (l2 l3 : Level) → Finite-Type l → UU (l ⊔ lsuc l2 ⊔ lsuc l3) cyclic-partition-Finite-Type l2 l3 X = Σ ( Finite-Type l2) ( λ Y → Σ ( type-Finite-Type Y → Σ ℕ (λ n → Cyclic-Type l3 (succ-ℕ n))) ( λ C → type-Finite-Type X ≃ Σ ( type-Finite-Type Y) ( λ y → type-Cyclic-Type (succ-ℕ (pr1 (C y))) (pr2 (C y))))) module _ {l1 l2 l3 : Level} (X : Finite-Type l1) (C : cyclic-partition-Finite-Type l2 l3 X) where finite-indexing-type-cyclic-partition-Finite-Type : Finite-Type l2 finite-indexing-type-cyclic-partition-Finite-Type = pr1 C indexing-type-cyclic-partition-Finite-Type : UU l2 indexing-type-cyclic-partition-Finite-Type = type-Finite-Type finite-indexing-type-cyclic-partition-Finite-Type order-cycle-cyclic-partition-Finite-Type : indexing-type-cyclic-partition-Finite-Type → ℕ order-cycle-cyclic-partition-Finite-Type y = succ-ℕ (pr1 (pr1 (pr2 C) y)) cycle-cyclic-partition-Finite-Type : (y : indexing-type-cyclic-partition-Finite-Type) → Cyclic-Type l3 (order-cycle-cyclic-partition-Finite-Type y) cycle-cyclic-partition-Finite-Type y = pr2 (pr1 (pr2 C) y) type-cycle-cyclic-partition-Finite-Type : indexing-type-cyclic-partition-Finite-Type → UU l3 type-cycle-cyclic-partition-Finite-Type y = type-Cyclic-Type ( order-cycle-cyclic-partition-Finite-Type y) ( cycle-cyclic-partition-Finite-Type y) equiv-cyclic-partition-Finite-Type : type-Finite-Type X ≃ Σ indexing-type-cyclic-partition-Finite-Type type-cycle-cyclic-partition-Finite-Type equiv-cyclic-partition-Finite-Type = pr2 (pr2 C)
Recent changes
- 2025-02-11. Fredrik Bakke. Switch from
𝔽
toFinite-*
(#1312). - 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).