Complete metric abelian groups
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
module analysis.complete-metric-abelian-groups where
Imports
open import analysis.metric-abelian-groups open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.complete-metric-spaces open import metric-spaces.metric-spaces
Idea
A complete metric abelian group¶ is a metric abelian group whose associated metric space is complete.
Definition
is-complete-prop-Metric-Ab : {l1 l2 : Level} → Metric-Ab l1 l2 → Prop (l1 ⊔ l2) is-complete-prop-Metric-Ab G = is-complete-prop-Metric-Space (metric-space-Metric-Ab G) is-complete-Metric-Ab : {l1 l2 : Level} → Metric-Ab l1 l2 → UU (l1 ⊔ l2) is-complete-Metric-Ab G = is-complete-Metric-Space (metric-space-Metric-Ab G) Complete-Metric-Ab : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Complete-Metric-Ab l1 l2 = type-subtype (is-complete-prop-Metric-Ab {l1} {l2})
Properties
module _ {l1 l2 : Level} (G : Complete-Metric-Ab l1 l2) where metric-ab-Complete-Metric-Ab : Metric-Ab l1 l2 metric-ab-Complete-Metric-Ab = pr1 G metric-space-Complete-Metric-Ab : Metric-Space l1 l2 metric-space-Complete-Metric-Ab = metric-space-Metric-Ab metric-ab-Complete-Metric-Ab complete-metric-space-Complete-Metric-Ab : Complete-Metric-Space l1 l2 complete-metric-space-Complete-Metric-Ab = ( metric-space-Complete-Metric-Ab , pr2 G) type-Complete-Metric-Ab : UU l1 type-Complete-Metric-Ab = type-Metric-Ab metric-ab-Complete-Metric-Ab
Recent changes
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).