Additive orders of elements of rings

Content created by Egbert Rijke and Gregor Perčič.

Created on 2023-09-21.
Last modified on 2023-11-24.

module ring-theory.additive-orders-of-elements-rings where
Imports
open import elementary-number-theory.group-of-integers
open import elementary-number-theory.integers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.universe-levels

open import group-theory.normal-subgroups
open import group-theory.orders-of-elements-groups
open import group-theory.subgroups
open import group-theory.subsets-groups

open import ring-theory.integer-multiples-of-elements-rings
open import ring-theory.rings

Idea

The additive order of an element x of a ring R is the normal subgroup of the group of integers consisting of all integers k such that kx = 0.

Definitions

Additive orders of elements of rings

module _
  {l : Level} (R : Ring l) (x : type-Ring R)
  where

  additive-order-element-Ring : Normal-Subgroup l ℤ-Group
  additive-order-element-Ring = order-element-Group (group-Ring R) x

  subgroup-additive-order-element-Ring : Subgroup l ℤ-Group
  subgroup-additive-order-element-Ring =
    subgroup-order-element-Group (group-Ring R) x

  subset-additive-order-element-Ring : subset-Group l ℤ-Group
  subset-additive-order-element-Ring =
    subset-order-element-Group (group-Ring R) x

  is-in-additive-order-element-Ring :   UU l
  is-in-additive-order-element-Ring =
    is-in-order-element-Group (group-Ring R) x

Divisibility of additive orders of elements of rings

module _
  {l : Level} (R : Ring l)
  where

  div-additive-order-element-Ring :
    (x y : type-Ring R)  UU l
  div-additive-order-element-Ring =
    div-order-element-Group (group-Ring R)

Properties

The order of any element divides the order of 1

Suppose that k·1 = 0 for some integer k. Then we have

  k·x = k·(1x) = (k·1)x = 0x = 0.

This shows that if the integer k is in the order of 1, then it is in the order of x. Therefore we conclude that the order of x always divides the order of 1.

module _
  {l : Level} (R : Ring l)
  where

  div-additive-order-element-additive-order-one-Ring :
    (x : type-Ring R) 
    div-order-element-Group (group-Ring R) x (one-Ring R)
  div-additive-order-element-additive-order-one-Ring x k H =
    ( inv (left-zero-law-mul-Ring R x)) 
    ( ap (mul-Ring' R x) H) 
    ( left-integer-multiple-law-mul-Ring R k _ _) 
    ( ap (integer-multiple-Ring R k) (left-unit-law-mul-Ring R x))

If there exists an integer k such that k·x = y then the order of y divides the order of x

Proof: Suppose that k·x = y and l·x = 0, then it follows that

  l·y = l·(k·x) = k·(l·x) = k·0 = 0.
module _
  {l : Level} (R : Ring l)
  where

  div-additive-order-element-is-integer-multiple-Ring :
    (x y : type-Ring R)  is-integer-multiple-of-element-Ring R x y 
    div-additive-order-element-Ring R y x
  div-additive-order-element-is-integer-multiple-Ring x y H l p =
    apply-universal-property-trunc-Prop H
      ( subset-additive-order-element-Ring R y l)
      ( λ (k , q) 
        ( inv (right-zero-law-integer-multiple-Ring R k)) 
        ( ap (integer-multiple-Ring R k) p) 
        ( swap-integer-multiple-Ring R k l x 
        ( ap (integer-multiple-Ring R l) q)))

If there exists an integer k such that k·x = 1 then the order of x is the order of 1

In other words, if there exists an integer k such that k·x = 1, then the additive order of x is the characteristic of the ring R.

module _
  {l : Level} (R : Ring l)
  where

  has-same-elements-additive-order-element-additive-order-one-Ring :
    (x : type-Ring R) 
    is-integer-multiple-of-element-Ring R x (one-Ring R) 
    has-same-elements-Normal-Subgroup
      ( ℤ-Group)
      ( additive-order-element-Ring R x)
      ( additive-order-element-Ring R (one-Ring R))
  pr1 (has-same-elements-additive-order-element-additive-order-one-Ring x H y) =
    div-additive-order-element-is-integer-multiple-Ring R x (one-Ring R) H y
  pr2 (has-same-elements-additive-order-element-additive-order-one-Ring x H y) =
    div-additive-order-element-additive-order-one-Ring R x y

  eq-additive-order-element-additive-order-one-Ring :
    (x : type-Ring R)  is-integer-multiple-of-element-Ring R x (one-Ring R) 
    additive-order-element-Ring R x 
    additive-order-element-Ring R (one-Ring R)
  eq-additive-order-element-additive-order-one-Ring x H =
    eq-has-same-elements-Normal-Subgroup
      ( ℤ-Group)
      ( additive-order-element-Ring R x)
      ( additive-order-element-Ring R (one-Ring R))
      ( has-same-elements-additive-order-element-additive-order-one-Ring x H)

Recent changes