Additive orders of elements of rings
Content created by Egbert Rijke and Gregor Perčič.
Created on 2023-09-21.
Last modified on 2023-11-24.
module ring-theory.additive-orders-of-elements-rings where
Imports
open import elementary-number-theory.group-of-integers open import elementary-number-theory.integers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import group-theory.normal-subgroups open import group-theory.orders-of-elements-groups open import group-theory.subgroups open import group-theory.subsets-groups open import ring-theory.integer-multiples-of-elements-rings open import ring-theory.rings
Idea
The additive order of an element x
of a ring R
is the normal subgroup of the
group ℤ
of integers
consisting of all integers k
such that
kx = 0
.
Definitions
Additive orders of elements of rings
module _ {l : Level} (R : Ring l) (x : type-Ring R) where additive-order-element-Ring : Normal-Subgroup l ℤ-Group additive-order-element-Ring = order-element-Group (group-Ring R) x subgroup-additive-order-element-Ring : Subgroup l ℤ-Group subgroup-additive-order-element-Ring = subgroup-order-element-Group (group-Ring R) x subset-additive-order-element-Ring : subset-Group l ℤ-Group subset-additive-order-element-Ring = subset-order-element-Group (group-Ring R) x is-in-additive-order-element-Ring : ℤ → UU l is-in-additive-order-element-Ring = is-in-order-element-Group (group-Ring R) x
Divisibility of additive orders of elements of rings
module _ {l : Level} (R : Ring l) where div-additive-order-element-Ring : (x y : type-Ring R) → UU l div-additive-order-element-Ring = div-order-element-Group (group-Ring R)
Properties
The order of any element divides the order of 1
Suppose that k·1 = 0
for some integer k
. Then we have
k·x = k·(1x) = (k·1)x = 0x = 0.
This shows that if the integer k
is in the order of 1
, then it is in the
order of x
. Therefore we conclude that the order of x
always divides the
order of 1
.
module _ {l : Level} (R : Ring l) where div-additive-order-element-additive-order-one-Ring : (x : type-Ring R) → div-order-element-Group (group-Ring R) x (one-Ring R) div-additive-order-element-additive-order-one-Ring x k H = ( inv (left-zero-law-mul-Ring R x)) ∙ ( ap (mul-Ring' R x) H) ∙ ( left-integer-multiple-law-mul-Ring R k _ _) ∙ ( ap (integer-multiple-Ring R k) (left-unit-law-mul-Ring R x))
If there exists an integer k
such that k·x = y
then the order of y
divides the order of x
Proof: Suppose that k·x = y
and l·x = 0
, then it follows that
l·y = l·(k·x) = k·(l·x) = k·0 = 0.
module _ {l : Level} (R : Ring l) where div-additive-order-element-is-integer-multiple-Ring : (x y : type-Ring R) → is-integer-multiple-of-element-Ring R x y → div-additive-order-element-Ring R y x div-additive-order-element-is-integer-multiple-Ring x y H l p = apply-universal-property-trunc-Prop H ( subset-additive-order-element-Ring R y l) ( λ (k , q) → ( inv (right-zero-law-integer-multiple-Ring R k)) ∙ ( ap (integer-multiple-Ring R k) p) ∙ ( swap-integer-multiple-Ring R k l x ∙ ( ap (integer-multiple-Ring R l) q)))
If there exists an integer k
such that k·x = 1
then the order of x
is the order of 1
In other words, if there exists an integer k
such that k·x = 1
, then the
additive order of x
is the
characteristic of the ring R
.
module _ {l : Level} (R : Ring l) where has-same-elements-additive-order-element-additive-order-one-Ring : (x : type-Ring R) → is-integer-multiple-of-element-Ring R x (one-Ring R) → has-same-elements-Normal-Subgroup ( ℤ-Group) ( additive-order-element-Ring R x) ( additive-order-element-Ring R (one-Ring R)) pr1 (has-same-elements-additive-order-element-additive-order-one-Ring x H y) = div-additive-order-element-is-integer-multiple-Ring R x (one-Ring R) H y pr2 (has-same-elements-additive-order-element-additive-order-one-Ring x H y) = div-additive-order-element-additive-order-one-Ring R x y eq-additive-order-element-additive-order-one-Ring : (x : type-Ring R) → is-integer-multiple-of-element-Ring R x (one-Ring R) → additive-order-element-Ring R x = additive-order-element-Ring R (one-Ring R) eq-additive-order-element-additive-order-one-Ring x H = eq-has-same-elements-Normal-Subgroup ( ℤ-Group) ( additive-order-element-Ring R x) ( additive-order-element-Ring R (one-Ring R)) ( has-same-elements-additive-order-element-additive-order-one-Ring x H)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).