Sorted lists

Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.

Created on 2023-05-03.
Last modified on 2024-02-06.

module lists.sorted-lists where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

open import linear-algebra.vectors

open import lists.arrays
open import lists.lists
open import lists.sorted-vectors

open import order-theory.decidable-total-orders

Idea

We define a sorted list to be a list such that for every pair of consecutive entries x and y, the inequality x ≤ y holds.

Definitions

The proposition that a list is sorted

module _
  {l1 l2 : Level} (X : Decidable-Total-Order l1 l2)
  where

  is-sorted-list-Prop : list (type-Decidable-Total-Order X)  Prop l2
  is-sorted-list-Prop nil = raise-unit-Prop l2
  is-sorted-list-Prop (cons x nil) = raise-unit-Prop l2
  is-sorted-list-Prop (cons x (cons y l)) =
    product-Prop
      ( leq-Decidable-Total-Order-Prop X x y)
      ( is-sorted-list-Prop (cons y l))

  is-sorted-list : list (type-Decidable-Total-Order X)  UU l2
  is-sorted-list l = type-Prop (is-sorted-list-Prop l)

  is-prop-is-sorted-list :
    (l : list (type-Decidable-Total-Order X))  is-prop (is-sorted-list l)
  is-prop-is-sorted-list l = is-prop-type-Prop (is-sorted-list-Prop l)

The proposition that an element is less or equal than every element in a list

  is-least-element-list-Prop :
    type-Decidable-Total-Order X 
    list (type-Decidable-Total-Order X)  Prop l2
  is-least-element-list-Prop x nil = raise-unit-Prop l2
  is-least-element-list-Prop x (cons y l) =
    product-Prop
      ( leq-Decidable-Total-Order-Prop X x y)
      ( is-least-element-list-Prop x l)

  is-least-element-list :
    type-Decidable-Total-Order X 
    list (type-Decidable-Total-Order X)  UU l2
  is-least-element-list x l = type-Prop (is-least-element-list-Prop x l)

Properties

If a list is sorted, then its tail is also sorted

  is-sorted-tail-is-sorted-list :
    (l : list (type-Decidable-Total-Order X)) 
    is-sorted-list l  is-sorted-list (tail-list l)
  is-sorted-tail-is-sorted-list nil _ = raise-star
  is-sorted-tail-is-sorted-list (cons x nil) s = raise-star
  is-sorted-tail-is-sorted-list (cons x (cons y l)) s = pr2 s

If a list is sorted then its head is less or equal than every element in the list

  leq-element-in-list-leq-head-is-sorted-list :
    (x y z : type-Decidable-Total-Order X)
    (l : list (type-Decidable-Total-Order X)) 
    is-sorted-list (cons y l) 
    z ∈-list (cons y l) 
    leq-Decidable-Total-Order X x y 
    leq-Decidable-Total-Order X x z
  leq-element-in-list-leq-head-is-sorted-list x .z z l s (is-head .z l) q =
    q
  leq-element-in-list-leq-head-is-sorted-list
    ( x)
    ( y)
    ( z)
    ( cons w l)
    ( s)
    ( is-in-tail .z .y .(cons w l) i)
    ( q) =
    leq-element-in-list-leq-head-is-sorted-list
      ( x)
      ( w)
      ( z)
      ( l)
      ( pr2 s)
      ( i)
      ( transitive-leq-Decidable-Total-Order X x y w (pr1 s) q)

An equivalent definition of being sorted

  is-sorted-least-element-list-Prop :
    list (type-Decidable-Total-Order X)  Prop l2
  is-sorted-least-element-list-Prop nil = raise-unit-Prop l2
  is-sorted-least-element-list-Prop (cons x l) =
    product-Prop
      ( is-least-element-list-Prop x l)
      ( is-sorted-least-element-list-Prop l)

  is-sorted-least-element-list :
    list (type-Decidable-Total-Order X)  UU l2
  is-sorted-least-element-list l =
    type-Prop (is-sorted-least-element-list-Prop l)

  is-sorted-list-is-sorted-least-element-list :
    (l : list (type-Decidable-Total-Order X)) 
    is-sorted-least-element-list l  is-sorted-list l
  is-sorted-list-is-sorted-least-element-list nil _ =
    raise-star
  is-sorted-list-is-sorted-least-element-list (cons x nil) _ =
    raise-star
  is-sorted-list-is-sorted-least-element-list
    (cons x (cons y l))
    (p , q) =
    ( pr1 p ,
      is-sorted-list-is-sorted-least-element-list (cons y l) q)

If a vector v of length n is sorted, then the list list-vec n v is also sorted

  is-sorted-list-is-sorted-vec :
    (n : ) (v : vec (type-Decidable-Total-Order X) n) 
    is-sorted-vec X v 
    is-sorted-list (list-vec n v)
  is-sorted-list-is-sorted-vec 0 v S = raise-star
  is-sorted-list-is-sorted-vec 1 (x  v) S = raise-star
  is-sorted-list-is-sorted-vec (succ-ℕ (succ-ℕ n)) (x  y  v) S =
    pr1 S , is-sorted-list-is-sorted-vec (succ-ℕ n) (y  v) (pr2 S)

Recent changes