Multiplicative inverses of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
module complex-numbers.multiplicative-inverses-nonzero-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.conjugation-complex-numbers open import complex-numbers.magnitude-complex-numbers open import complex-numbers.multiplication-complex-numbers open import complex-numbers.nonzero-complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.multiplication-real-numbers open import real-numbers.multiplicative-inverses-positive-real-numbers open import real-numbers.rational-real-numbers
Idea
Nonzero complex numbers have inverses under multiplication.
Definition
complex-inv-nonzero-ℂ : {l : Level} (z : nonzero-ℂ l) → ℂ l complex-inv-nonzero-ℂ (z , z≠0) = conjugate-ℂ z *ℂ complex-ℝ (real-inv-ℝ⁺ (positive-squared-magnitude-nonzero-ℂ (z , z≠0)))
Properties
Inverse laws of multiplication
abstract right-inverse-law-mul-nonzero-ℂ : {l : Level} (z : nonzero-ℂ l) → sim-ℂ (complex-nonzero-ℂ z *ℂ complex-inv-nonzero-ℂ z) one-ℂ right-inverse-law-mul-nonzero-ℂ (z@(a +iℂ b) , z≠0) = similarity-reasoning-ℂ z *ℂ ( conjugate-ℂ z *ℂ complex-ℝ ( real-inv-ℝ⁺ (positive-squared-magnitude-nonzero-ℂ (z , z≠0)))) ~ℂ ( z *ℂ conjugate-ℂ z) *ℂ ( complex-ℝ ( real-inv-ℝ⁺ (positive-squared-magnitude-nonzero-ℂ (z , z≠0)))) by sim-eq-ℂ (inv (associative-mul-ℂ _ _ _)) ~ℂ complex-ℝ (squared-magnitude-ℂ z) *ℂ complex-ℝ ( real-inv-ℝ⁺ (positive-squared-magnitude-nonzero-ℂ (z , z≠0))) by sim-eq-ℂ (ap-mul-ℂ (eq-squared-magnitude-mul-conjugate-ℂ z) refl) ~ℂ complex-ℝ ( squared-magnitude-ℂ z *ℝ real-inv-ℝ⁺ (positive-squared-magnitude-nonzero-ℂ (z , z≠0))) by sim-eq-ℂ (mul-complex-ℝ _ _) ~ℂ complex-ℝ one-ℝ by preserves-sim-complex-ℝ ( right-inverse-law-mul-ℝ⁺ ( positive-squared-magnitude-nonzero-ℂ (z , z≠0))) ~ℂ one-ℂ by sim-eq-ℂ eq-complex-one-ℝ left-inverse-law-mul-nonzero-ℂ : {l : Level} (z : nonzero-ℂ l) → sim-ℂ (complex-inv-nonzero-ℂ z *ℂ complex-nonzero-ℂ z) one-ℂ left-inverse-law-mul-nonzero-ℂ z = tr ( λ w → sim-ℂ w one-ℂ) ( commutative-mul-ℂ _ _) ( right-inverse-law-mul-nonzero-ℂ z)
Recent changes
- 2025-11-16. Louis Wasserman. Multiplicative inverses of nonzero complex numbers (#1684).