Connected types
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Tom de Jong, Daniel Gratzer and Elisabeth Stenholm.
Created on 2022-02-18.
Last modified on 2024-04-17.
module foundation.connected-types where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.function-extensionality open import foundation.functoriality-truncation open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.truncations open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.contractible-maps open import foundation-core.equivalences open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.precomposition-functions open import foundation-core.retracts-of-types open import foundation-core.truncated-types open import foundation-core.truncation-levels
Idea
A type is said to be k
-connected if its k
-truncation is contractible.
Definition
is-connected-Prop : {l : Level} (k : 𝕋) → UU l → Prop l is-connected-Prop k A = is-contr-Prop (type-trunc k A) is-connected : {l : Level} (k : 𝕋) → UU l → UU l is-connected k A = type-Prop (is-connected-Prop k A) is-prop-is-connected : {l : Level} (k : 𝕋) (A : UU l) → is-prop (is-connected k A) is-prop-is-connected k A = is-prop-type-Prop (is-connected-Prop k A)
Properties
All types are (-2)
-connected
is-neg-two-connected : {l : Level} (A : UU l) → is-connected neg-two-𝕋 A is-neg-two-connected A = is-trunc-type-trunc
A type A
is k
-connected if and only if the map B → (A → B)
is an equivalence for every k
-truncated type B
is-equiv-diagonal-exponential-is-connected : {l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k) → is-connected k A → is-equiv (diagonal-exponential (type-Truncated-Type B) A) is-equiv-diagonal-exponential-is-connected {k = k} {A} B H = is-equiv-comp ( precomp unit-trunc (type-Truncated-Type B)) ( diagonal-exponential (type-Truncated-Type B) (type-trunc k A)) ( is-equiv-diagonal-exponential-is-contr H (type-Truncated-Type B)) ( is-truncation-trunc B) is-connected-is-equiv-diagonal-exponential : {l1 : Level} {k : 𝕋} {A : UU l1} → ( {l2 : Level} (B : Truncated-Type l2 k) → is-equiv (diagonal-exponential (type-Truncated-Type B) A)) → is-connected k A is-connected-is-equiv-diagonal-exponential {k = k} {A} H = tot ( λ x → function-dependent-universal-property-trunc ( Id-Truncated-Type' (trunc k A) x)) ( tot ( λ _ → htpy-eq) ( center (is-contr-map-is-equiv (H (trunc k A)) unit-trunc)))
A contractible type is k
-connected for any k
module _ {l1 : Level} (k : 𝕋) {A : UU l1} where is-connected-is-contr : is-contr A → is-connected k A is-connected-is-contr H = is-connected-is-equiv-diagonal-exponential ( λ B → is-equiv-diagonal-exponential-is-contr H (type-Truncated-Type B))
A type that is (k+1)
-connected is k
-connected
is-connected-is-connected-succ-𝕋 : {l1 : Level} (k : 𝕋) {A : UU l1} → is-connected (succ-𝕋 k) A → is-connected k A is-connected-is-connected-succ-𝕋 k H = is-connected-is-equiv-diagonal-exponential ( λ B → is-equiv-diagonal-exponential-is-connected ( truncated-type-succ-Truncated-Type k B) ( H))
The total space of a family of k
-connected types over a k
-connected type is k
-connected
is-connected-Σ : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → is-connected k A → ((x : A) → is-connected k (B x)) → is-connected k (Σ A B) is-connected-Σ k H K = is-contr-equiv _ (equiv-trunc k (equiv-pr1 K) ∘e equiv-trunc-Σ k) H
An inhabited type A
is k + 1
-connected if and only if its identity types are k
-connected
module _ {l1 : Level} {k : 𝕋} {A : UU l1} where abstract is-inhabited-is-connected : is-connected (succ-𝕋 k) A → is-inhabited A is-inhabited-is-connected H = map-universal-property-trunc ( truncated-type-Prop k (is-inhabited-Prop A)) ( unit-trunc-Prop) ( center H) abstract is-connected-eq-is-connected : is-connected (succ-𝕋 k) A → {x y : A} → is-connected k (x = y) is-connected-eq-is-connected H {x} {y} = is-contr-equiv ( unit-trunc x = unit-trunc y) ( effectiveness-trunc k x y) ( is-prop-is-contr H (unit-trunc x) (unit-trunc y)) abstract is-connected-succ-is-connected-eq : is-inhabited A → ((x y : A) → is-connected k (x = y)) → is-connected (succ-𝕋 k) A is-connected-succ-is-connected-eq H K = apply-universal-property-trunc-Prop H ( is-connected-Prop (succ-𝕋 k) A) ( λ a → ( unit-trunc a) , ( function-dependent-universal-property-trunc ( Id-Truncated-Type ( truncated-type-succ-Truncated-Type ( succ-𝕋 k) ( trunc (succ-𝕋 k) A)) ( unit-trunc a)) ( λ x → map-universal-property-trunc ( Id-Truncated-Type ( trunc (succ-𝕋 k) A) ( unit-trunc a) ( unit-trunc x)) ( λ where refl → refl) ( center (K a x)))))
Being connected is invariant under equivalence
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where is-connected-is-equiv : (f : A → B) → is-equiv f → is-connected k B → is-connected k A is-connected-is-equiv f e = is-contr-is-equiv ( type-trunc k B) ( map-trunc k f) ( is-equiv-map-equiv-trunc k (f , e)) is-connected-equiv : A ≃ B → is-connected k B → is-connected k A is-connected-equiv f = is-connected-is-equiv (map-equiv f) (is-equiv-map-equiv f) module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where is-connected-equiv' : A ≃ B → is-connected k A → is-connected k B is-connected-equiv' f = is-connected-equiv (inv-equiv f) is-connected-is-equiv' : (f : A → B) → is-equiv f → is-connected k A → is-connected k B is-connected-is-equiv' f e = is-connected-equiv' (f , e)
Retracts of k
-connected types are k
-connected
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where is-connected-retract-of : A retract-of B → is-connected k B → is-connected k A is-connected-retract-of R c = is-contr-retract-of (type-trunc k B) (retract-of-trunc-retract-of R) c
Recent changes
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-04-11. Fredrik Bakke. Refactor diagonals (#1096).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).