The binary maximum of real numbers is a short map
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-01.
Last modified on 2026-01-01.
{-# OPTIONS --lossy-unification #-} module real-numbers.short-map-binary-maximum-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.metric-space-of-short-maps-metric-spaces open import metric-spaces.short-maps-metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces open import order-theory.least-upper-bounds-large-posets open import real-numbers.addition-positive-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.binary-maximum-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.uniformly-continuous-endomaps-real-numbers
Idea
For any a : ℝ, the
binary maximum with a is a
short map ℝ → ℝ for the
standard real metric structure.
Moreover, the map x ↦ max-ℝ x is a short map from ℝ into the
metric space of short maps
of ℝ.
Proof
The binary maximum preserves lower neighborhoods
module _ {l1 l2 l3 : Level} (d : ℚ⁺) (x : ℝ l1) (y : ℝ l2) (z : ℝ l3) where abstract preserves-lower-neighborhood-leq-left-max-ℝ : leq-ℝ y (z +ℝ real-ℚ⁺ d) → leq-ℝ ( max-ℝ x y) ( (max-ℝ x z) +ℝ real-ℚ⁺ d) preserves-lower-neighborhood-leq-left-max-ℝ z≤y+d = leq-is-least-binary-upper-bound-Large-Poset ( ℝ-Large-Poset) ( x) ( y) ( is-least-binary-upper-bound-max-ℝ x y) ( (max-ℝ x z) +ℝ real-ℚ⁺ d) ( ( transitive-leq-ℝ ( x) ( max-ℝ x z) ( max-ℝ x z +ℝ real-ℚ⁺ d) ( leq-le-ℝ ( le-left-add-real-ℝ⁺ ( max-ℝ x z) ( positive-real-ℚ⁺ d))) ( leq-left-max-ℝ x z)) , ( transitive-leq-ℝ ( y) ( z +ℝ real-ℚ⁺ d) ( max-ℝ x z +ℝ real-ℚ⁺ d) ( preserves-leq-right-add-ℝ ( real-ℚ⁺ d) ( z) ( max-ℝ x z) ( leq-right-max-ℝ x z)) ( z≤y+d))) preserves-lower-neighborhood-leq-right-max-ℝ : leq-ℝ y (z +ℝ real-ℚ⁺ d) → leq-ℝ ( max-ℝ y x) ( (max-ℝ z x) +ℝ real-ℚ⁺ d) preserves-lower-neighborhood-leq-right-max-ℝ z≤y+d = binary-tr ( λ u v → leq-ℝ u (v +ℝ real-ℚ⁺ d)) ( commutative-max-ℝ x y) ( commutative-max-ℝ x z) ( preserves-lower-neighborhood-leq-left-max-ℝ z≤y+d)
The maximum with a real number is a short map ℝ → ℝ
module _ {l1 l2 : Level} (x : ℝ l1) where abstract is-short-map-left-max-ℝ : is-short-map-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( max-ℝ x) is-short-map-left-max-ℝ d y z Nyz = neighborhood-real-bound-each-leq-ℝ ( d) ( max-ℝ x y) ( max-ℝ x z) ( preserves-lower-neighborhood-leq-left-max-ℝ d x y z ( left-leq-real-bound-neighborhood-ℝ d y z Nyz)) ( preserves-lower-neighborhood-leq-left-max-ℝ d x z y ( right-leq-real-bound-neighborhood-ℝ d y z Nyz)) short-map-left-max-ℝ : short-map-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) short-map-left-max-ℝ = (max-ℝ x , is-short-map-left-max-ℝ) uniformly-continuous-map-left-max-ℝ : uniformly-continuous-endomap-ℝ l2 (l1 ⊔ l2) uniformly-continuous-map-left-max-ℝ = uniformly-continuous-map-short-map-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( short-map-left-max-ℝ)
The binary maximum is a short map from ℝ to the metric space of short maps ℝ → ℝ
module _ {l1 l2 : Level} where abstract is-short-map-short-map-left-max-ℝ : is-short-map-Metric-Space ( metric-space-ℝ l1) ( metric-space-of-short-maps-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2))) ( short-map-left-max-ℝ) is-short-map-short-map-left-max-ℝ d x y Nxy z = neighborhood-real-bound-each-leq-ℝ ( d) ( max-ℝ x z) ( max-ℝ y z) ( preserves-lower-neighborhood-leq-right-max-ℝ d z x y ( left-leq-real-bound-neighborhood-ℝ d x y Nxy)) ( preserves-lower-neighborhood-leq-right-max-ℝ d z y x ( right-leq-real-bound-neighborhood-ℝ d x y Nxy)) short-map-max-ℝ : short-map-Metric-Space ( metric-space-ℝ l1) ( metric-space-of-short-maps-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2))) short-map-max-ℝ = ( short-map-left-max-ℝ , is-short-map-short-map-left-max-ℝ)
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).