Cartesian products of commutative monoids
Content created by Louis Wasserman.
Created on 2025-08-18.
Last modified on 2025-08-18.
module group-theory.cartesian-products-commutative-monoids where
Imports
open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.cartesian-products-monoids open import group-theory.commutative-monoids open import group-theory.homomorphisms-commutative-monoids open import group-theory.monoids
Idea
The
cartesian product¶
of two commutative monoids M
and N
consists of the product M × N
of the
underlying sets and the componentwise operation on it.
Definition
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) where monoid-product-Commutative-Monoid : Monoid (l1 ⊔ l2) monoid-product-Commutative-Monoid = product-Monoid (monoid-Commutative-Monoid M) (monoid-Commutative-Monoid N) set-product-Commutative-Monoid : Set (l1 ⊔ l2) set-product-Commutative-Monoid = set-Monoid monoid-product-Commutative-Monoid type-product-Commutative-Monoid : UU (l1 ⊔ l2) type-product-Commutative-Monoid = type-Monoid monoid-product-Commutative-Monoid is-set-type-product-Commutative-Monoid : is-set type-product-Commutative-Monoid is-set-type-product-Commutative-Monoid = is-set-type-Set set-product-Commutative-Monoid mul-product-Commutative-Monoid : (x y : type-product-Commutative-Monoid) → type-product-Commutative-Monoid mul-product-Commutative-Monoid = mul-Monoid monoid-product-Commutative-Monoid associative-mul-product-Commutative-Monoid : (x y z : type-product-Commutative-Monoid) → Id ( mul-product-Commutative-Monoid (mul-product-Commutative-Monoid x y) z) ( mul-product-Commutative-Monoid x (mul-product-Commutative-Monoid y z)) associative-mul-product-Commutative-Monoid = associative-mul-Monoid monoid-product-Commutative-Monoid unit-product-Commutative-Monoid : type-product-Commutative-Monoid unit-product-Commutative-Monoid = unit-Monoid monoid-product-Commutative-Monoid left-unit-law-mul-product-Commutative-Monoid : (x : type-product-Commutative-Monoid) → Id (mul-product-Commutative-Monoid unit-product-Commutative-Monoid x) x left-unit-law-mul-product-Commutative-Monoid = left-unit-law-mul-Monoid monoid-product-Commutative-Monoid right-unit-law-mul-product-Commutative-Monoid : (x : type-product-Commutative-Monoid) → Id (mul-product-Commutative-Monoid x unit-product-Commutative-Monoid) x right-unit-law-mul-product-Commutative-Monoid = right-unit-law-mul-Monoid monoid-product-Commutative-Monoid commutative-mul-product-Commutative-Monoid : (x y : type-product-Commutative-Monoid) → Id ( mul-product-Commutative-Monoid x y) ( mul-product-Commutative-Monoid y x) commutative-mul-product-Commutative-Monoid _ _ = eq-pair ( commutative-mul-Commutative-Monoid M _ _) ( commutative-mul-Commutative-Monoid N _ _) product-Commutative-Monoid : Commutative-Monoid (l1 ⊔ l2) product-Commutative-Monoid = monoid-product-Commutative-Monoid , commutative-mul-product-Commutative-Monoid
Properties
The homomorphism from M
to M × N
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) where left-hom-product-Commutative-Monoid : hom-Commutative-Monoid M (product-Commutative-Monoid M N) left-hom-product-Commutative-Monoid = left-hom-product-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N)
The homomorphism from N
to M × N
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (N : Commutative-Monoid l2) where right-hom-product-Commutative-Monoid : hom-Commutative-Monoid N (product-Commutative-Monoid M N) right-hom-product-Commutative-Monoid = right-hom-product-Monoid ( monoid-Commutative-Monoid M) ( monoid-Commutative-Monoid N)
External links
- Cartesian product at Wikidata
Recent changes
- 2025-08-18. Louis Wasserman. Grothendieck groups of commutative monoids (#1479).