Strict inequality on the integers

Content created by Fredrik Bakke and malarbol.

Created on 2024-03-28.
Last modified on 2024-04-25.

module elementary-number-theory.strict-inequality-integers where
Imports
open import elementary-number-theory.addition-integers
open import elementary-number-theory.addition-positive-and-negative-integers
open import elementary-number-theory.difference-integers
open import elementary-number-theory.inequality-integers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.integers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.negative-integers
open import elementary-number-theory.nonnegative-integers
open import elementary-number-theory.nonpositive-integers
open import elementary-number-theory.positive-and-negative-integers
open import elementary-number-theory.positive-integers

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.decidable-propositions
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.functoriality-coproduct-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.negated-equality
open import foundation.negation
open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.unit-type
open import foundation.universe-levels

open import order-theory.posets
open import order-theory.preorders

Idea

An integer x is strictly less than the integer y if the difference y - x is positive. This relation defines the standard strict ordering on the integers.

Definition

Strict inequality on the integers

le-ℤ-Prop :     Prop lzero
le-ℤ-Prop x y = subtype-positive-ℤ (y -ℤ x)

le-ℤ :     UU lzero
le-ℤ x y = type-Prop (le-ℤ-Prop x y)

is-prop-le-ℤ : (x y : )  is-prop (le-ℤ x y)
is-prop-le-ℤ x y = is-prop-type-Prop (le-ℤ-Prop x y)

Properties

Strict inequality on the integers implies inequality

leq-le-ℤ : {x y : }  le-ℤ x y  leq-ℤ x y
leq-le-ℤ {x} {y} = is-nonnegative-is-positive-ℤ

Strict inequality on the integers is decidable

is-decidable-le-ℤ : (x y : )  (le-ℤ x y) + ¬ (le-ℤ x y)
is-decidable-le-ℤ x y = is-decidable-is-positive-ℤ (y -ℤ x)

le-ℤ-Decidable-Prop : (x y : )  Decidable-Prop lzero
le-ℤ-Decidable-Prop x y =
  ( le-ℤ x y ,
    is-prop-le-ℤ x y ,
    is-decidable-le-ℤ x y)

Strict inequality on the integers is transitive

transitive-le-ℤ : (k l m : )  le-ℤ l m  le-ℤ k l  le-ℤ k m
transitive-le-ℤ k l m H K =
  is-positive-eq-ℤ
    ( triangle-diff-ℤ m l k)
    ( is-positive-add-ℤ H K)

Strict inequality on the integers is asymmetric

asymmetric-le-ℤ : (x y : )  le-ℤ x y  ¬ (le-ℤ y x)
asymmetric-le-ℤ x y p =
  is-not-positive-is-nonpositive-ℤ
    ( is-nonpositive-eq-ℤ
      ( distributive-neg-diff-ℤ y x)
      ( is-nonpositive-neg-is-nonnegative-ℤ
        ( is-nonnegative-is-positive-ℤ p)))

Strict inequality on the integers is connected

connected-le-ℤ : (x y : )  x  y  le-ℤ x y + le-ℤ y x
connected-le-ℤ x y H =
  map-coproduct
    ( λ K 
      is-positive-eq-ℤ
        ( distributive-neg-diff-ℤ x y)
        ( is-positive-neg-is-negative-ℤ K))
    ( id)
    ( decide-sign-nonzero-ℤ (H  eq-diff-ℤ))

Any integer is strictly greater than its predecessor

le-pred-ℤ : (x : )  le-ℤ (pred-ℤ x) x
le-pred-ℤ x =
  is-positive-eq-ℤ
    ( inv (right-predecessor-law-diff-ℤ x x  ap succ-ℤ (is-zero-diff-ℤ' x)))
    ( is-positive-int-positive-ℤ one-positive-ℤ)

Any integer is strictly lesser than its successor

le-succ-ℤ : (x : )  le-ℤ x (succ-ℤ x)
le-succ-ℤ x =
  is-positive-eq-ℤ
    ( inv (left-successor-law-diff-ℤ x x  ap succ-ℤ (is-zero-diff-ℤ' x)))
    ( is-positive-int-positive-ℤ one-positive-ℤ)

Strict inequality on the integers is invariant by translation

module _
  (z x y : )
  where

  eq-translate-left-le-ℤ : le-ℤ (z +ℤ x) (z +ℤ y)  le-ℤ x y
  eq-translate-left-le-ℤ = ap is-positive-ℤ (left-translation-diff-ℤ y x z)

  eq-translate-right-le-ℤ : le-ℤ (x +ℤ z) (y +ℤ z)  le-ℤ x y
  eq-translate-right-le-ℤ = ap is-positive-ℤ (right-translation-diff-ℤ y x z)

Addition on the integers preserves strict inequality

preserves-le-left-add-ℤ :
  (z x y : )  le-ℤ x y  le-ℤ (x +ℤ z) (y +ℤ z)
preserves-le-left-add-ℤ z x y =
  is-positive-eq-ℤ (inv (right-translation-diff-ℤ y x z))

preserves-le-right-add-ℤ :
  (z x y : )  le-ℤ x y  le-ℤ (z +ℤ x) (z +ℤ y)
preserves-le-right-add-ℤ z x y =
  is-positive-eq-ℤ (inv (left-translation-diff-ℤ y x z))

preserves-le-add-ℤ :
  {a b c d : }  le-ℤ a b  le-ℤ c d  le-ℤ (a +ℤ c) (b +ℤ d)
preserves-le-add-ℤ {a} {b} {c} {d} H K =
  transitive-le-ℤ
    ( a +ℤ c)
    ( b +ℤ c)
    ( b +ℤ d)
    ( preserves-le-right-add-ℤ b c d K)
    ( preserves-le-left-add-ℤ c a b H)

Addition on the integers reflects strict inequality

reflects-le-left-add-ℤ :
  (z x y : )  le-ℤ (x +ℤ z) (y +ℤ z)  le-ℤ x y
reflects-le-left-add-ℤ z x y =
  is-positive-eq-ℤ (right-translation-diff-ℤ y x z)

reflects-le-right-add-ℤ :
  (z x y : )  le-ℤ (z +ℤ x) (z +ℤ y)  le-ℤ x y
reflects-le-right-add-ℤ z x y =
  is-positive-eq-ℤ (left-translation-diff-ℤ y x z)

An integer x is positive if and only if 0 < x

module _
  (x : )
  where

  abstract
    le-zero-is-positive-ℤ : is-positive-ℤ x  le-ℤ zero-ℤ x
    le-zero-is-positive-ℤ = is-positive-eq-ℤ (inv (right-zero-law-diff-ℤ x))

    is-positive-le-zero-ℤ : le-ℤ zero-ℤ x  is-positive-ℤ x
    is-positive-le-zero-ℤ = is-positive-eq-ℤ (right-zero-law-diff-ℤ x)

    eq-le-zero-is-positive-ℤ : is-positive-ℤ x  le-ℤ zero-ℤ x
    eq-le-zero-is-positive-ℤ = ap is-positive-ℤ (inv (right-zero-law-diff-ℤ x))

If an integer is greater than a positive integer it is positive

module _
  (x y : ) (I : le-ℤ x y)
  where

  abstract
    is-positive-le-positive-ℤ : is-positive-ℤ x  is-positive-ℤ y
    is-positive-le-positive-ℤ H =
      is-positive-le-zero-ℤ y
        ( transitive-le-ℤ
          ( zero-ℤ)
          ( x)
          ( y)
          ( I)
          ( le-zero-is-positive-ℤ x H))

An integer x is negative if and only if x < 0

module _
  (x : )
  where

  abstract
    le-zero-is-negative-ℤ : is-negative-ℤ x  le-ℤ x zero-ℤ
    le-zero-is-negative-ℤ = is-positive-neg-is-negative-ℤ

    is-negative-le-zero-ℤ : le-ℤ x zero-ℤ  is-negative-ℤ x
    is-negative-le-zero-ℤ H =
      is-negative-eq-ℤ
        ( neg-neg-ℤ x)
        ( is-negative-neg-is-positive-ℤ H)

If an integer is lesser than a negative integer it is negative

module _
  (x y : ) (I : le-ℤ x y)
  where

  abstract
    is-negative-le-negative-ℤ : is-negative-ℤ y  is-negative-ℤ x
    is-negative-le-negative-ℤ H =
      is-negative-le-zero-ℤ x
        ( transitive-le-ℤ
          ( x)
          ( y)
          ( zero-ℤ)
          ( le-zero-is-negative-ℤ y H)
          ( I))

Recent changes