Signatures
Content created by Fernando Chu and Garrett Figueroa.
Created on 2023-03-20.
Last modified on 2025-09-05.
module universal-algebra.signatures where
Imports
open import elementary-number-theory.natural-numbers open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.identity-types open import foundation.universe-levels
Idea
A signature is a collection of function symbols with given arities.
Definitions
Signatures
signature : (l : Level) → UU (lsuc l) signature (l) = Σ (UU l) (λ operations → (operations → ℕ)) operation-signature : {l : Level} → signature l → UU l operation-signature σ = pr1 σ arity-operation-signature : {l : Level} → (σ : signature l) → (operation-signature σ → ℕ) arity-operation-signature σ = pr2 σ
Extension of signatures
is-extension-signature : {l1 l2 : Level} → signature l1 → signature l2 → UU (l1 ⊔ l2) is-extension-signature σ τ = Σ ( operation-signature τ → operation-signature σ) ( λ f → is-emb f × ( ( op : operation-signature τ) → arity-operation-signature τ op = arity-operation-signature σ (f op))) emb-extension-signature : {l1 l2 : Level} → (σ : signature l1) → (τ : signature l2) → is-extension-signature σ τ → (operation-signature τ → operation-signature σ) emb-extension-signature σ τ ext = pr1 ext is-emb-extension-signature : {l1 l2 : Level} → (σ : signature l1) → (τ : signature l2) → (ext : is-extension-signature σ τ) → is-emb (emb-extension-signature σ τ ext) is-emb-extension-signature σ τ ext = pr1 (pr2 ext) arity-preserved-extension-signature : {l1 l2 : Level} → (σ : signature l1) → (τ : signature l2) → (ext : is-extension-signature σ τ) → (op : operation-signature τ) → arity-operation-signature τ op = arity-operation-signature σ (emb-extension-signature σ τ ext op) arity-preserved-extension-signature σ τ ext = pr2 (pr2 ext)
Recent changes
- 2025-09-05. Garrett Figueroa. Category of algebras of a theory (#1483).
- 2023-03-20. Fernando Chu. Universal algebra first commit (#522).