The unit closed interval in the real numbers
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.unit-closed-interval-real-numbers where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.unit-closed-interval-rational-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.images open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.complete-metric-spaces open import metric-spaces.metric-spaces open import real-numbers.closed-intervals-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.density-rationals-proper-closed-intervals-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.subsets-real-numbers open import real-numbers.totally-bounded-subsets-real-numbers open import univalent-combinatorics.finitely-enumerable-subtypes
Idea
The
unit interval¶
in the real numbers is the
proper closed interval
[0, 1].
Definition
unit-proper-closed-interval-ℝ : proper-closed-interval-ℝ lzero lzero unit-proper-closed-interval-ℝ = ( zero-ℝ , one-ℝ , le-zero-one-ℝ) unit-closed-interval-ℝ : closed-interval-ℝ lzero lzero unit-closed-interval-ℝ = ( (zero-ℝ , one-ℝ) , leq-zero-one-ℝ) subset-unit-interval-ℝ : (l : Level) → subset-ℝ l l subset-unit-interval-ℝ l = subtype-closed-interval-ℝ l unit-closed-interval-ℝ type-unit-interval-ℝ : (l : Level) → UU (lsuc l) type-unit-interval-ℝ l = type-subtype (subset-unit-interval-ℝ l)
Properties
The metric space associated with the unit closed interval
metric-space-unit-interval-ℝ : (l : Level) → Metric-Space (lsuc l) l metric-space-unit-interval-ℝ l = metric-space-closed-interval-ℝ l unit-closed-interval-ℝ complete-metric-space-unit-interval-ℝ : (l : Level) → Complete-Metric-Space (lsuc l) l complete-metric-space-unit-interval-ℝ l = complete-metric-space-closed-interval-ℝ l unit-closed-interval-ℝ
The unit closed interval is totally bounded
module _ (l : Level) where abstract modulus-of-total-boundedness-unit-closed-interval-ℝ : modulus-of-total-boundedness-subset-ℝ ( lsuc l) ( subset-unit-interval-ℝ l) modulus-of-total-boundedness-unit-closed-interval-ℝ ε = let (ε₁ , ε₂ , ε₁+ε₂=ε) = split-ℚ⁺ ε (S , is-net-S) = modulus-of-total-boundedness-unit-closed-interval-ℚ ε₁ in ( im-finitely-enumerable-subtype ( raise-real-type-closed-interval-ℚ l unit-closed-interval-ℚ) ( S) , λ (x , 0≤x , x≤1) → let open do-syntax-trunc-Prop ( ∃ ( type-im-finitely-enumerable-subtype ( raise-real-type-closed-interval-ℚ ( l) ( unit-closed-interval-ℚ)) ( S)) ( λ ((y , _) , _) → neighborhood-prop-ℝ l ε y x)) in do ((pℝ , 0≤pℝ , pℝ≤1) , Nε₂xp , p , p=pℝ) ← is-dense-subset-rational-proper-closed-interval-ℝ ( l) ( unit-proper-closed-interval-ℝ) ( x , 0≤x , x≤1) ( ε₂) (((q , 0≤q , q≤1) , q∈S) , Nε₁qp) ← is-net-S ( p , reflects-leq-real-ℚ ( preserves-leq-right-sim-ℝ ( sim-rational-ℝ (pℝ , p , p=pℝ)) ( 0≤pℝ)) , reflects-leq-real-ℚ ( preserves-leq-left-sim-ℝ ( sim-rational-ℝ (pℝ , p , p=pℝ)) ( pℝ≤1))) intro-exists ( map-unit-im ( ( raise-real-type-closed-interval-ℚ ( l) ( unit-closed-interval-ℚ)) ∘ ( pr1)) ( (q , 0≤q , q≤1) , q∈S)) ( tr ( λ δ → neighborhood-ℝ l δ (raise-real-ℚ l q) x) ( ε₁+ε₂=ε) ( is-triangular-neighborhood-ℝ ( raise-real-ℚ l q) ( pℝ) ( x) ( ε₁) ( ε₂) ( is-symmetric-neighborhood-ℝ ε₂ x pℝ Nε₂xp) ( inv-tr ( neighborhood-ℝ l ε₁ (raise-real-ℚ l q)) ( eq-raise-real-rational-is-rational-ℝ p=pℝ) ( forward-implication ( is-isometry-raise-real-ℚ ( l) ( ε₁) ( q) ( p)) ( Nε₁qp)))))) is-totally-bounded-unit-closed-interval-ℝ : is-totally-bounded-subset-ℝ ( lsuc l) ( subset-unit-interval-ℝ l) is-totally-bounded-unit-closed-interval-ℝ = unit-trunc-Prop modulus-of-total-boundedness-unit-closed-interval-ℝ
External links
- Unit interval at Wikidata
Recent changes
- 2026-01-11. Louis Wasserman. The unit interval in the real numbers is totally bounded (#1769).