Function magmas
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-03-13.
Last modified on 2023-03-19.
module structured-types.function-magmas where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import structured-types.magmas
Idea
Given a magma M
and a type X
, the function magma M^X
consists of functions
from X
into the underlying type of M
. The operation on M^X
is defined
pointwise.
Definition
module _ {l1 l2 : Level} (M : Magma l1) (X : UU l2) where type-function-Magma : UU (l1 ⊔ l2) type-function-Magma = X → type-Magma M mul-function-Magma : type-function-Magma → type-function-Magma → type-function-Magma mul-function-Magma f g x = mul-Magma M (f x) (g x) function-Magma : Magma (l1 ⊔ l2) pr1 function-Magma = type-function-Magma pr2 function-Magma = mul-function-Magma
Recent changes
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).