The center of a group
Content created by Jonathan Prieto-Cubides, Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2022-07-15.
Last modified on 2023-11-24.
module group-theory.centers-groups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.central-elements-groups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.normal-subgroups open import group-theory.subgroups
Idea
The center of a group consists of those elements that are central.
Definition
module _ {l : Level} (G : Group l) where subtype-center-Group : type-Group G → Prop l subtype-center-Group = is-central-element-prop-Group G subgroup-center-Group : Subgroup l G pr1 subgroup-center-Group = subtype-center-Group pr1 (pr2 subgroup-center-Group) = is-central-element-unit-Group G pr1 (pr2 (pr2 subgroup-center-Group)) = is-central-element-mul-Group G pr2 (pr2 (pr2 subgroup-center-Group)) = is-central-element-inv-Group G group-center-Group : Group l group-center-Group = group-Subgroup G subgroup-center-Group type-center-Group : UU l type-center-Group = type-Subgroup G subgroup-center-Group mul-center-Group : (x y : type-center-Group) → type-center-Group mul-center-Group = mul-Subgroup G subgroup-center-Group associative-mul-center-Group : (x y z : type-center-Group) → mul-center-Group (mul-center-Group x y) z = mul-center-Group x (mul-center-Group y z) associative-mul-center-Group = associative-mul-Subgroup G subgroup-center-Group inclusion-center-Group : type-center-Group → type-Group G inclusion-center-Group = inclusion-Subgroup G subgroup-center-Group is-central-element-inclusion-center-Group : (x : type-center-Group) → is-central-element-Group G (inclusion-center-Group x) is-central-element-inclusion-center-Group x = is-in-subgroup-inclusion-Subgroup G subgroup-center-Group x preserves-mul-inclusion-center-Group : {x y : type-center-Group} → inclusion-center-Group (mul-center-Group x y) = mul-Group G ( inclusion-center-Group x) ( inclusion-center-Group y) preserves-mul-inclusion-center-Group {x} {y} = preserves-mul-inclusion-Subgroup G subgroup-center-Group {x} {y} hom-inclusion-center-Group : hom-Group group-center-Group G hom-inclusion-center-Group = hom-inclusion-Subgroup G subgroup-center-Group is-normal-subgroup-center-Group : is-normal-Subgroup G subgroup-center-Group is-normal-subgroup-center-Group x y = is-central-element-conjugation-Group G ( inclusion-center-Group y) ( x) ( is-central-element-inclusion-center-Group y) center-Group : Normal-Subgroup l G pr1 center-Group = subgroup-center-Group pr2 center-Group = is-normal-subgroup-center-Group
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).