Positive conatural numbers
Content created by Fredrik Bakke.
Created on 2025-01-04.
Last modified on 2025-01-04.
{-# OPTIONS --guardedness #-} module elementary-number-theory.positive-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers open import elementary-number-theory.zero-conatural-numbers open import foundation.coproduct-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.maybe open import foundation.negation open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.identity-types
Idea
A conatural number x
is
positive¶ if
it has a predecessor. In other words, if it is not
zero.
Definitions
The predicate on conatural numbers of being positive
is-positive-ℕ∞ : ℕ∞ → UU lzero is-positive-ℕ∞ x = is-value-Maybe (decons-ℕ∞ x)
Properties
Zero is not positive
is-not-positive-zero-ℕ∞ : ¬ (is-positive-ℕ∞ zero-ℕ∞) is-not-positive-zero-ℕ∞ ()
Successors are positive
is-positive-succ-ℕ∞ : (x : ℕ∞) → is-positive-ℕ∞ (succ-ℕ∞ x) is-positive-succ-ℕ∞ x = x , refl
The point at infinity is positive
is-positive-infinity-ℕ∞ : is-positive-ℕ∞ infinity-ℕ∞ is-positive-infinity-ℕ∞ = is-positive-succ-ℕ∞ infinity-ℕ∞
Positivity is decidable
is-decidable-is-positive-ℕ∞ : (x : ℕ∞) → is-decidable (is-positive-ℕ∞ x) is-decidable-is-positive-ℕ∞ x with decons-ℕ∞ x is-decidable-is-positive-ℕ∞ x | inl y = inl (is-positive-succ-ℕ∞ y) is-decidable-is-positive-ℕ∞ x | inr _ = inr is-not-positive-zero-ℕ∞
A conatural number is positive if and only if it is nonzero
is-positive-is-not-zero-ℕ∞ : (x : ℕ∞) → ¬ (is-zero-ℕ∞ x) → is-positive-ℕ∞ x is-positive-is-not-zero-ℕ∞ x H with decons-ℕ∞ x is-positive-is-not-zero-ℕ∞ x H | inl y = y , refl is-positive-is-not-zero-ℕ∞ x H | inr * = ex-falso (H refl) is-not-zero-is-positive-ℕ∞ : (x : ℕ∞) → is-positive-ℕ∞ x → ¬ (is-zero-ℕ∞ x) is-not-zero-is-positive-ℕ∞ x = is-not-exception-is-value-Maybe (decons-ℕ∞ x)
See also
Recent changes
- 2025-01-04. Fredrik Bakke. Coinductive definition of the conatural numbers (#1232).