Rational upper Dedekind real numbers

Content created by Louis Wasserman.

Created on 2025-02-16.
Last modified on 2025-02-16.

module real-numbers.rational-upper-dedekind-real-numbers where
Imports
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.logical-equivalences
open import foundation.subtypes
open import foundation.universe-levels

open import real-numbers.upper-dedekind-real-numbers

Idea

There is a canonical mapping from the rational numbers to the upper Dedekind real numbers.

Definition

module _
  (q : )
  where

  cut-upper-real-ℚ : subtype lzero 
  cut-upper-real-ℚ = le-ℚ-Prop q

  is-in-cut-upper-real-ℚ :   UU lzero
  is-in-cut-upper-real-ℚ = le-ℚ q

  is-inhabited-cut-upper-real-ℚ : exists  cut-upper-real-ℚ
  is-inhabited-cut-upper-real-ℚ = exists-greater-ℚ q

  is-rounded-cut-upper-real-ℚ :
    (p : ) 
    le-ℚ q p  exists   r  le-ℚ-Prop r p  le-ℚ-Prop q r)
  pr1 (is-rounded-cut-upper-real-ℚ p) q<p =
    intro-exists
      ( mediant-ℚ q p)
      ( le-right-mediant-ℚ q p q<p , le-left-mediant-ℚ q p q<p)
  pr2 (is-rounded-cut-upper-real-ℚ p) =
    elim-exists
      ( le-ℚ-Prop q p)
      ( λ r (r<p , q<r)  transitive-le-ℚ q r p r<p q<r)

  upper-real-ℚ : upper-ℝ lzero
  pr1 upper-real-ℚ = cut-upper-real-ℚ
  pr1 (pr2 upper-real-ℚ) = is-inhabited-cut-upper-real-ℚ
  pr2 (pr2 upper-real-ℚ) = is-rounded-cut-upper-real-ℚ

Recent changes