Rational upper Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-02-16.
Last modified on 2025-02-16.
module real-numbers.rational-upper-dedekind-real-numbers where
Imports
open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.logical-equivalences open import foundation.subtypes open import foundation.universe-levels open import real-numbers.upper-dedekind-real-numbers
Idea
There is a canonical mapping from the rational numbers to the upper Dedekind real numbers.
Definition
module _ (q : ℚ) where cut-upper-real-ℚ : subtype lzero ℚ cut-upper-real-ℚ = le-ℚ-Prop q is-in-cut-upper-real-ℚ : ℚ → UU lzero is-in-cut-upper-real-ℚ = le-ℚ q is-inhabited-cut-upper-real-ℚ : exists ℚ cut-upper-real-ℚ is-inhabited-cut-upper-real-ℚ = exists-greater-ℚ q is-rounded-cut-upper-real-ℚ : (p : ℚ) → le-ℚ q p ↔ exists ℚ (λ r → le-ℚ-Prop r p ∧ le-ℚ-Prop q r) pr1 (is-rounded-cut-upper-real-ℚ p) q<p = intro-exists ( mediant-ℚ q p) ( le-right-mediant-ℚ q p q<p , le-left-mediant-ℚ q p q<p) pr2 (is-rounded-cut-upper-real-ℚ p) = elim-exists ( le-ℚ-Prop q p) ( λ r (r<p , q<r) → transitive-le-ℚ q r p r<p q<r) upper-real-ℚ : upper-ℝ lzero pr1 upper-real-ℚ = cut-upper-real-ℚ pr1 (pr2 upper-real-ℚ) = is-inhabited-cut-upper-real-ℚ pr2 (pr2 upper-real-ℚ) = is-rounded-cut-upper-real-ℚ
Recent changes
- 2025-02-16. Louis Wasserman. Break the Dedekind reals into lower and upper Dedekind reals (#1314).