Dependent products of large binary relations
Content created by Louis Wasserman.
Created on 2026-02-21.
Last modified on 2026-02-21.
module foundation.dependent-products-large-binary-relations where
Imports
open import foundation.large-binary-relations open import foundation.propositions open import foundation.universe-levels
Idea
Large binary relations can be extended to dependent products.
Definition
module _ {α : Level → Level} {β : Level → Level → Level} {l0 : Level} (I : UU l0) (X : I → (l : Level) → UU (α l)) where Π-Large-Relation : ((i : I) → Large-Relation β (X i)) → Large-Relation (λ l1 l2 → l0 ⊔ β l1 l2) (λ l → (i : I) → X i l) Π-Large-Relation R f g = (i : I) → R i (f i) (g i) Π-Large-Relation-Prop : ((i : I) → Large-Relation-Prop β (X i)) → Large-Relation-Prop (λ l1 l2 → l0 ⊔ β l1 l2) (λ l → (i : I) → X i l) Π-Large-Relation-Prop R f g = Π-Prop I (λ i → R i (f i) (g i))
Properties
Reflexivity of dependent products of large binary relations
module _ {α : Level → Level} {β : Level → Level → Level} {l0 : Level} (I : UU l0) (X : I → (l : Level) → UU (α l)) (R : (i : I) → Large-Relation β (X i)) where is-reflexive-Π-Large-Relation : ((i : I) → is-reflexive-Large-Relation (X i) (R i)) → is-reflexive-Large-Relation (λ l → (i : I) → X i l) (Π-Large-Relation I X R) is-reflexive-Π-Large-Relation refl-R f i = refl-R i (f i)
Symmetry of dependent products of large binary relations
module _ {α : Level → Level} {β : Level → Level → Level} {l0 : Level} (I : UU l0) (X : I → (l : Level) → UU (α l)) (R : (i : I) → Large-Relation β (X i)) where is-symmetric-Π-Large-Relation : ((i : I) → is-symmetric-Large-Relation (X i) (R i)) → is-symmetric-Large-Relation (λ l → (i : I) → X i l) (Π-Large-Relation I X R) is-symmetric-Π-Large-Relation sym-R f g f~g i = sym-R i (f i) (g i) (f~g i)
Transitivity of dependent products of large binary relations
module _ {α : Level → Level} {β : Level → Level → Level} {l0 : Level} (I : UU l0) (X : I → (l : Level) → UU (α l)) (R : (i : I) → Large-Relation β (X i)) where is-transitive-Π-Large-Relation : ((i : I) → is-transitive-Large-Relation (X i) (R i)) → is-transitive-Large-Relation ( λ l → (i : I) → X i l) ( Π-Large-Relation I X R) is-transitive-Π-Large-Relation trans-R f g h g~h f~g i = trans-R i (f i) (g i) (h i) (g~h i) (f~g i)
Recent changes
- 2026-02-21. Louis Wasserman. Dependent products of cumulative large sets (#1855).