The standard Euclidean vector space
Content created by Louis Wasserman.
Created on 2026-01-09.
Last modified on 2026-01-09.
{-# OPTIONS --lossy-unification #-} module linear-algebra.standard-euclidean-vector-spaces where
Imports
open import elementary-number-theory.natural-numbers open import foundation.sets open import foundation.universe-levels open import linear-algebra.dependent-products-left-modules-commutative-rings open import linear-algebra.left-modules-commutative-rings open import linear-algebra.real-vector-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.large-ring-of-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
The
standard Euclidean space¶
ℝⁿ is the real vector space of
finite sequences of
real numbers of length n.
Definition
vector-space-ℝ-Fin : ℕ → (l : Level) → ℝ-Vector-Space l (lsuc l) vector-space-ℝ-Fin n l = Π-left-module-Commutative-Ring ( commutative-ring-ℝ l) ( Fin n) ( λ _ → left-module-commutative-ring-Commutative-Ring (commutative-ring-ℝ l)) set-ℝ-Fin : ℕ → (l : Level) → Set (lsuc l) set-ℝ-Fin n l = set-ℝ-Vector-Space (vector-space-ℝ-Fin n l) type-ℝ-Fin : ℕ → (l : Level) → UU (lsuc l) type-ℝ-Fin n l = type-ℝ-Vector-Space (vector-space-ℝ-Fin n l) add-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → type-ℝ-Fin n l → type-ℝ-Fin n l add-ℝ-Fin {n} {l} = add-ℝ-Vector-Space (vector-space-ℝ-Fin n l) mul-ℝ-Fin : {n : ℕ} {l : Level} → ℝ l → type-ℝ-Fin n l → type-ℝ-Fin n l mul-ℝ-Fin {n} {l} = mul-ℝ-Vector-Space (vector-space-ℝ-Fin n l) zero-ℝ-Fin : (n : ℕ) (l : Level) → type-ℝ-Fin n l zero-ℝ-Fin n l = zero-ℝ-Vector-Space (vector-space-ℝ-Fin n l) neg-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → type-ℝ-Fin n l neg-ℝ-Fin {n} {l} = neg-ℝ-Vector-Space (vector-space-ℝ-Fin n l) diff-ℝ-Fin : {n : ℕ} {l : Level} → type-ℝ-Fin n l → type-ℝ-Fin n l → type-ℝ-Fin n l diff-ℝ-Fin u v = add-ℝ-Fin u (neg-ℝ-Fin v)
External links
- Euclidean space at Wikidata
Recent changes
- 2026-01-09. Louis Wasserman. The standard Euclidean spaces ℝⁿ (#1756).