The standard Euclidean vector space

Content created by Louis Wasserman.

Created on 2026-01-09.
Last modified on 2026-01-09.

{-# OPTIONS --lossy-unification #-}

module linear-algebra.standard-euclidean-vector-spaces where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.sets
open import foundation.universe-levels

open import linear-algebra.dependent-products-left-modules-commutative-rings
open import linear-algebra.left-modules-commutative-rings
open import linear-algebra.real-vector-spaces

open import real-numbers.dedekind-real-numbers
open import real-numbers.large-ring-of-real-numbers

open import univalent-combinatorics.standard-finite-types

Idea

The standard Euclidean space ℝⁿ is the real vector space of finite sequences of real numbers of length n.

Definition

vector-space-ℝ-Fin :   (l : Level)  ℝ-Vector-Space l (lsuc l)
vector-space-ℝ-Fin n l =
  Π-left-module-Commutative-Ring
    ( commutative-ring-ℝ l)
    ( Fin n)
    ( λ _ 
      left-module-commutative-ring-Commutative-Ring (commutative-ring-ℝ l))

set-ℝ-Fin :   (l : Level)  Set (lsuc l)
set-ℝ-Fin n l = set-ℝ-Vector-Space (vector-space-ℝ-Fin n l)

type-ℝ-Fin :   (l : Level)  UU (lsuc l)
type-ℝ-Fin n l = type-ℝ-Vector-Space (vector-space-ℝ-Fin n l)

add-ℝ-Fin :
  {n : } {l : Level} 
  type-ℝ-Fin n l  type-ℝ-Fin n l  type-ℝ-Fin n l
add-ℝ-Fin {n} {l} =
  add-ℝ-Vector-Space (vector-space-ℝ-Fin n l)

mul-ℝ-Fin :
  {n : } {l : Level}   l  type-ℝ-Fin n l  type-ℝ-Fin n l
mul-ℝ-Fin {n} {l} =
  mul-ℝ-Vector-Space (vector-space-ℝ-Fin n l)

zero-ℝ-Fin : (n : ) (l : Level)  type-ℝ-Fin n l
zero-ℝ-Fin n l = zero-ℝ-Vector-Space (vector-space-ℝ-Fin n l)

neg-ℝ-Fin :
  {n : } {l : Level}  type-ℝ-Fin n l  type-ℝ-Fin n l
neg-ℝ-Fin {n} {l} =
  neg-ℝ-Vector-Space (vector-space-ℝ-Fin n l)

diff-ℝ-Fin :
  {n : } {l : Level} 
  type-ℝ-Fin n l  type-ℝ-Fin n l  type-ℝ-Fin n l
diff-ℝ-Fin u v = add-ℝ-Fin u (neg-ℝ-Fin v)

Recent changes