Finite posets
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-01-05.
Last modified on 2025-02-11.
module order-theory.finite-posets where
Imports
open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import order-theory.finite-preorders open import order-theory.posets open import order-theory.preorders open import univalent-combinatorics.finite-types
Definitions
A finite poset is a poset of which the underlying type is finite, and of which the ordering relation is decidable.
module _ {l1 l2 : Level} (P : Poset l1 l2) where is-finite-Poset-Prop : Prop (l1 ⊔ l2) is-finite-Poset-Prop = is-finite-Preorder-Prop (preorder-Poset P) is-finite-Poset : UU (l1 ⊔ l2) is-finite-Poset = is-finite-Preorder (preorder-Poset P) is-prop-is-finite-Poset : is-prop is-finite-Poset is-prop-is-finite-Poset = is-prop-is-finite-Preorder (preorder-Poset P) is-finite-type-is-finite-Poset : is-finite-Poset → is-finite (type-Poset P) is-finite-type-is-finite-Poset = is-finite-type-is-finite-Preorder (preorder-Poset P) is-decidable-leq-is-finite-Poset : is-finite-Poset → (x y : type-Poset P) → is-decidable (leq-Poset P x y) is-decidable-leq-is-finite-Poset = is-decidable-leq-is-finite-Preorder (preorder-Poset P) Finite-Poset : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Finite-Poset l1 l2 = Σ ( Finite-Preorder l1 l2) ( λ P → is-antisymmetric-leq-Preorder (preorder-Finite-Preorder P)) finite-preorder-Finite-Poset : {l1 l2 : Level} → Finite-Poset l1 l2 → Finite-Preorder l1 l2 finite-preorder-Finite-Poset = pr1 preorder-Finite-Poset : {l1 l2 : Level} → Finite-Poset l1 l2 → Preorder l1 l2 preorder-Finite-Poset = preorder-Finite-Preorder ∘ pr1 is-antisymmetric-leq-Finite-Poset : {l1 l2 : Level} (P : Finite-Poset l1 l2) → is-antisymmetric-leq-Preorder (preorder-Finite-Poset P) is-antisymmetric-leq-Finite-Poset = pr2 poset-Finite-Poset : {l1 l2 : Level} → Finite-Poset l1 l2 → Poset l1 l2 pr1 (poset-Finite-Poset P) = preorder-Finite-Poset P pr2 (poset-Finite-Poset P) = is-antisymmetric-leq-Finite-Poset P
Recent changes
- 2025-02-11. Fredrik Bakke. Switch from
𝔽
toFinite-*
(#1312). - 2023-10-16. Fredrik Bakke. The simplex precategory (#845).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-05. Egbert Rijke. cleaning up order theory (#591).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).