Cauchy sequences in the real numbers
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-10-19.
{-# OPTIONS --lossy-unification #-} module real-numbers.cauchy-sequences-real-numbers where
Imports
open import foundation.universe-levels open import lists.sequences open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.cauchy-sequences-complete-metric-spaces open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.convergent-sequences-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.cauchy-completeness-dedekind-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.isometry-addition-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
A Cauchy sequence¶ is a Cauchy sequence in the metric space of real numbers. Because the metric space of real numbers is complete, a sequence of real numbers has a convergence modulus if and only if it is Cauchy.
Definition
cauchy-sequence-ℝ : (l : Level) → UU (lsuc l) cauchy-sequence-ℝ l = cauchy-sequence-Metric-Space (metric-space-ℝ l)
Properties
All Cauchy sequences in ℝ have a limit
lim-cauchy-sequence-ℝ : {l : Level} → cauchy-sequence-ℝ l → ℝ l lim-cauchy-sequence-ℝ {l} = limit-cauchy-sequence-Complete-Metric-Space (complete-metric-space-ℝ l)
The sum of Cauchy sequences is a Cauchy sequence
add-cauchy-sequence-ℝ : {l1 l2 : Level} → cauchy-sequence-ℝ l1 → cauchy-sequence-ℝ l2 → cauchy-sequence-ℝ (l1 ⊔ l2) add-cauchy-sequence-ℝ {l1} {l2} u v = map-modulated-ucont-map-cauchy-sequence-Metric-Space ( product-Metric-Space (metric-space-ℝ l1) (metric-space-ℝ l2)) ( metric-space-ℝ (l1 ⊔ l2)) ( modulated-ucont-add-pair-ℝ l1 l2) ( pair-cauchy-sequence-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( u) ( v))
Recent changes
- 2025-10-19. Louis Wasserman. Adding limits and Cauchy sequences in the real numbers (#1603).