Cauchy sequences in the real numbers

Content created by Louis Wasserman.

Created on 2025-10-19.
Last modified on 2025-10-19.

{-# OPTIONS --lossy-unification #-}

module real-numbers.cauchy-sequences-real-numbers where
Imports
open import foundation.universe-levels

open import lists.sequences

open import metric-spaces.cartesian-products-metric-spaces
open import metric-spaces.cauchy-sequences-complete-metric-spaces
open import metric-spaces.cauchy-sequences-metric-spaces
open import metric-spaces.convergent-sequences-metric-spaces

open import real-numbers.addition-real-numbers
open import real-numbers.cauchy-completeness-dedekind-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.isometry-addition-real-numbers
open import real-numbers.metric-space-of-real-numbers

Idea

A Cauchy sequence is a Cauchy sequence in the metric space of real numbers. Because the metric space of real numbers is complete, a sequence of real numbers has a convergence modulus if and only if it is Cauchy.

Definition

cauchy-sequence-ℝ : (l : Level)  UU (lsuc l)
cauchy-sequence-ℝ l = cauchy-sequence-Metric-Space (metric-space-ℝ l)

Properties

All Cauchy sequences in ℝ have a limit

lim-cauchy-sequence-ℝ : {l : Level}  cauchy-sequence-ℝ l   l
lim-cauchy-sequence-ℝ {l} =
  limit-cauchy-sequence-Complete-Metric-Space (complete-metric-space-ℝ l)

The sum of Cauchy sequences is a Cauchy sequence

add-cauchy-sequence-ℝ :
  {l1 l2 : Level}  cauchy-sequence-ℝ l1  cauchy-sequence-ℝ l2 
  cauchy-sequence-ℝ (l1  l2)
add-cauchy-sequence-ℝ {l1} {l2} u v =
  map-modulated-ucont-map-cauchy-sequence-Metric-Space
    ( product-Metric-Space (metric-space-ℝ l1) (metric-space-ℝ l2))
    ( metric-space-ℝ (l1  l2))
    ( modulated-ucont-add-pair-ℝ l1 l2)
    ( pair-cauchy-sequence-Metric-Space
      ( metric-space-ℝ l1)
      ( metric-space-ℝ l2)
      ( u)
      ( v))

Recent changes