The binary action on identifications of binary functions

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-06-10.
Last modified on 2024-12-03.

module foundation.action-on-identifications-binary-functions where
Imports
open import foundation.action-on-identifications-functions
open import foundation.universe-levels

open import foundation-core.identity-types

Idea

Given a binary operation f : A → B → C and identifications p : x = x' in A and q : y = y' in B, we obtain an identification

  ap-binary f p q : f x y = f x' y'

we call this the binary action on identifications of binary functions.

There are a few different ways we can define ap-binary. We could define it by pattern matching on both p and q, but this leads to restricted computational behaviour. Instead, we define it as the upper concatenation in the Gray interchanger diagram

                      ap (r ↦ f x r) q
                 f x y -------------> f x y'
                   |                    |
                   |                    |
  ap (r ↦ f r y) p |                    | ap (r ↦ f r y') p
                   |                    |
                   ∨                    ∨
                 f x' y ------------> f x' y'.
                      ap (r ↦ f x' r) q

Definition

The binary action on identifications of binary functions

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C)
  where

  ap-binary :
    {x x' : A} (p : x  x') {y y' : B} (q : y  y')  f x y  f x' y'
  ap-binary {x} {x'} p {y} {y'} q = ap  r  f r y) p  ap (f x') q

Properties

The binary action on identifications in terms of the unary action on identifications

The binary action on identifications computes as a concatenation of applications of the unary action on identifications of functions:

  ap-binary f p q = ap (r ↦ f r y) p ∙ ap (r ↦ f x' r) q

and

  ap-binary f p q = ap (r ↦ f x r) q ∙ ap (r ↦ f r y') p.
module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C)
  where

  triangle-ap-binary :
    {x x' : A} (p : x  x') {y y' : B} (q : y  y') 
    ap-binary f p q  ap  r  f r y) p  ap (f x') q
  triangle-ap-binary _ _ = refl

  triangle-ap-binary' :
    {x x' : A} (p : x  x') {y y' : B} (q : y  y') 
    ap-binary f p q  ap (f x) q  ap  r  f r y') p
  triangle-ap-binary' refl refl = refl

The unit laws for the binary action on identifications of binary functions

The binary action on identifications of binary functions evaluated at a reflexivity computes as an instance of unary action on identifications of (unary) functions.

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C)
  where

  left-unit-ap-binary :
    {x : A} {y y' : B} (q : y  y')  ap-binary f refl q  ap (f x) q
  left-unit-ap-binary _ = refl

  right-unit-ap-binary :
    {x x' : A} (p : x  x') {y : B}  ap-binary f p refl  ap  r  f r y) p
  right-unit-ap-binary refl = refl

The binary action on identifications evaluated on the diagonal

The binary action on identifications evaluated on the diagonal computes as an instance of unary action on identifications. Specifically, we have the following uncurried commuting square

                           (- ∘ Δ) × 1
       (A × A → B) × Path A --------> (A → B) × Path A
                |                             |
                |                             |
          1 × Δ |                             | ap
                |                             |
                ∨                             ∨
  (A × A → B) × Path A × Path A ----------> Path B.
                                 ap-binary
module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  A  B)
  where

  ap-binary-diagonal :
    {x x' : A} (p : x  x')  ap-binary f p p  ap  r  f r r) p
  ap-binary-diagonal refl = refl

The binary action on identifications distributes over identification concatenation

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C)
  where

  ap-binary-concat :
    {x y z : A} (p : x  y) (p' : y  z)
    {x' y' z' : B} (q : x'  y') (q' : y'  z') 
    ap-binary f (p  p') (q  q')  ap-binary f p q  ap-binary f p' q'
  ap-binary-concat refl _ refl _ = refl

The binary action on identifications distributes over function composition

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (H : A  B  C)
  where

  ap-binary-comp :
    {l4 l5 : Level} {X : UU l4} {Y : UU l5} (f : X  A) (g : Y  B)
    {x x' : X} (p : x  x') {y y' : Y} (q : y  y') 
    ap-binary  x y  H (f x) (g y)) p q  ap-binary H (ap f p) (ap g q)
  ap-binary-comp f g refl refl = refl

  ap-binary-comp-diagonal :
    {l4 : Level} {A' : UU l4} (f : A'  A) (g : A'  B)
    {x y : A'} (p : x  y) 
    ap  z  H (f z) (g z)) p  ap-binary H (ap f p) (ap g p)
  ap-binary-comp-diagonal f g p =
    ( inv (ap-binary-diagonal  x y  H (f x) (g y)) p)) 
    ( ap-binary-comp f g p p)

  ap-binary-comp' :
    {l4 : Level} {D : UU l4} (f : C  D)
    {x x' : A} (p : x  x') {y y' : B} (q : y  y') 
    ap-binary  a b  f (H a b)) p q  ap f (ap-binary H p q)
  ap-binary-comp' f refl refl = refl

Computing the binary action on identifications when swapping argument order

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C)
  where

  ap-binary-permute :
    {x x' : A} (p : x  x') {y y' : B} (q : y  y') 
    ap-binary  y x  f x y) q p  ap-binary f p q
  ap-binary-permute refl refl = refl

See also

Recent changes