Homomorphisms of algebras
Content created by Fredrik Bakke, Egbert Rijke and Fernando Chu.
Created on 2023-03-20.
Last modified on 2023-09-26.
module universal-algebra.homomorphisms-of-algebras where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import linear-algebra.functoriality-vectors open import linear-algebra.vectors open import universal-algebra.algebraic-theories open import universal-algebra.algebras-of-theories open import universal-algebra.signatures
Idea
An algebra homomorphism from one algebra to another is a function between their underlying types such that all the structure is preserved.
Definitions
module _ { l1 : Level} ( Sg : signature l1) { l2 : Level} ( Th : Theory Sg l2) { l3 l4 : Level} ( Alg1 : Algebra Sg Th l3) ( Alg2 : Algebra Sg Th l4) where preserves-operations-Algebra : (type-Algebra Sg Th Alg1 → type-Algebra Sg Th Alg2) → UU (l1 ⊔ l3 ⊔ l4) preserves-operations-Algebra f = ( op : operation-signature Sg) → ( v : vec (type-Algebra Sg Th Alg1) ( arity-operation-signature Sg op)) → ( f (is-model-set-Algebra Sg Th Alg1 op v) = ( is-model-set-Algebra Sg Th Alg2 op (map-vec f v))) hom-Algebra : UU (l1 ⊔ l3 ⊔ l4) hom-Algebra = Σ ( type-Algebra Sg Th Alg1 → type-Algebra Sg Th Alg2) ( preserves-operations-Algebra) map-hom-Algebra : hom-Algebra → type-Algebra Sg Th Alg1 → type-Algebra Sg Th Alg2 map-hom-Algebra = pr1 preserves-operations-hom-Algebra : ( f : hom-Algebra) → preserves-operations-Algebra (map-hom-Algebra f) preserves-operations-hom-Algebra = pr2
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-20. Fernando Chu. Universal algebra first commit (#522).